Деликатес для мотора: кому и для чего нужен гоночный бензин? Что понимается под октановым числом бензина? Максимальное октановое число бензина.

Начнем с азов

Октановое число - важный показатель качества бензина, характеризующий его антидетонационную стойкость. Детонация - это самопроизвольное, не зависящее от искры на свече зажигания, воспламенение рабочей смеси в цилиндре под воздействием температуры и давления, сопровождающееся ненормально быстрым ее сгоранием. Незначительная и краткая по времени детонация, возникающая, как правило, при резком увеличении нагрузки, особой угрозы не представляет, хоть и проявляется неприятными для слуха стуками и характерным «цоканьем», которое автомобилисты со стажем называют «звоном пальцев».

Под большой нагрузкой детонация может быть сильнее и разрушительнее. Возникающие при этом стуки могут быть «замаскированы» общим шумом двигателя. Длительная детонация чрезвычайно опасна. Она способна в считанные часы (а то и минуты) разрушить двигатель.

В погоне за дополнительной мощностью мо­торо­строители на протяжении всего прошло­го века шли самым про­стым путем - повышали степень сжатия (т. е. соотношение объемов цилиндра при нахождении поршня в нижней и верхней мертвых точках). Более высокое давление сжатой рабочей смеси провоцировало детонацию. Требовался бензин с все большим октановым числом. Если в тридцатые годы прошлого века величайшим достижением считали бензин с октановым числом 76, то теперь не удивляет и 100.

Октановое число топлива определяется на специальном одноцилиндровом двигателе путем сравнения со смесью изооктана (изомера октана 2, 2, 4-триметилпептана) и η-гептана. Октановое число бензина, равное, например, 92, означает, что его детонационная стойкость соответствует стойкости смеси из 92 частей изооктана и 8 - η-гептана. Хотя оба вещества и входят обычно в состав бензина, октановое число не означает, что бензин состоит только из них. Это куда более сложный «коктейль», точный рецепт которого зачастую не знают даже сами его производители. Когда американец Рассел Маркер из корпорации Ethyl разрабатывал в 1926 году методику определения октанового числа, он выбрал η-гептан в качестве нулевого эталона только по одной причине: конкретный изомер углеводородного соединения высокой чистоты из нефти не получить, а η-гептан можно произвести из сосновой смолы.

Если с октановым числом в принципе все понятно, начнем все запутывать. Октановые числа (а их как минимум два) - не единственные единицы измерения антидетонационной стойкости. Даже на одном и том же моторном стенде с помощью двух разных методик определяются два показателя.

Исследовательский метод ASTM дает нам, соответ­ственно, исследовательское октановое число или, правильнее, октановое число по исследовательскому методу (ИОЧ). Помните буковку «и» в маркировке наших старых бензинов?

В ходе испытания одноцилиндровый двигатель с принудительно изменяемой степенью сжатия работает в контролируемых условиях с минимальной нагрузкой.

Для определения октанового числа по моторному методу (МОЧ) подаваемая в тот же двигатель рабочая смесь предварительно подогревается, обороты коленвала увеличиваются, меняются регулировки момента опережения зажигания. Таким образом, бензин подвергается более жесткому и близкому к реальной эксплуатации испытанию. Обычно ИОЧ топлива на 8–10 единиц больше его МОЧ. Это соотношение стоит запомнить, оно может пригодиться для практических расчетов.

Общего, стандартного способа обозначения детонационной стойкости бензина в мире не существует. В Европе и Австралии используют исследовательский метод. У нас в стране до недавнего времени ходили оба, о чем свидетельствовала упомянутая буква «и» (или ее отсут­ствие -
свидетельство использования моторного метода). В Новой Зеландии, соседке Австралии, больше оперируют МОЧ. Даже исследование проводили о снижении его минимума с 82 до 81 единицы. А вот Северная Америка идет своим путем. Там используют совсем другие названия, к счастью, обозначающие один и тот же параметр. В ходу здесь антидетонационный коэффициент AKI - Anti-Knock Index, дорожное октановое число RdON - Road Octane Number (не путать с RON - Research ON - 0Ч по исследовательскому методу), насосное октановое число PON - Pump Octane Number или просто (R+M)/2. Последнее обозначение объясняет суть всех предыдущих. В США и Канаде указывается среднее арифметическое окатновых чисел, полученных по двум разным методикам, то есть
AKI=ИОЧ+МОЧ/2. AKI на 4–5 единиц меньше, чем ИОЧ
(RON). Эти цифры тоже могут пригодиться.

Маленькая экскурсия

Если все вышеупомянутое вам понятно, придется усложнить ситуацию. Очень часто продавцы топлива вместо октанового числа указывают сорт бензина. При этом в разных странах за одними и теми же словами скрываются разные цифры. Более того, единообразия нет даже в отдельных штатах, образующих США.

Начнем от родной печки. У нас бензин А-92 уже подается как Regular, А-95 как Premium и А-98 - как Super. Еще не исчез А-76, замаскированный под А-80, но скорый запрет оставил «старичка» без названия.Данные по некоторым другим странам приведены в сводной таблице. Сразу ее прокомментируем.

Горные штаты США ничем не отличаются от других горных районов мира. Высота над уровнем моря здесь больше, воздух разреженнее. Как ни старайся, без наддува давление в цилиндре как в начале такта сжатия, так и в его конце будет ниже, чем на равнине. Следовательно, и бензин здесь может обладать пониженной стойкостью к детонации. Помните об этом, собираясь надолго спуститься с гор. Чуть пониженные требования к ОЧ в Калифорнии объясняются просто: надо подтолкнуть жителей самого богатого штата к покупке имеющегося в избытке «сотого». Ferrari и Porsche скажут «спасибо». И нефтетрейдеры тоже. В ряде стран Европы 95-й уже давно считается «стандартным» или «регулярным». Хуже не делают.

Зато в некоторых странах третьего мира с Regular и Standard возможны осложнения: они могут быть схожи с нашим А-76 (80). Приведенные здесь сведения помимо познавательного имеют и прикладное значение. Зная страну происхождения купленной иномарки, ее владелец сможет определить, каким бензином надо потчевать свою стальную лошадку. Ведь абсолютное большинство машин, кроме спортивных, представительских и тюнинговых, как правило, довольствуется сортом Regular/Standard без указания в мануале реального октанового числа. Полезны эти цифры и сервисменам, как помогающие определить, каким путем устранять, например, «тупость» машины. Просто перейти на бензин с большим О4 или менять дорогостоящий блок управления двигателем. К месту, специально для механиков, отметим, что сильной детонацией (и от сильной детонации) больше страдают карбюраторные двигатели. На впрысковых обычно имеется датчик детонации в виде миниатюрного пьезоэлектрического микрофона, по сигналу которого электронные мозги делают зажигание более поздним, снижая детонацию. Двигатель страдает меньше, больше страдает владелец машины. Из-за ухудшившейся динамики и роста расходов на топливо.

Вернемся к теме

Как вся эта путаница связана с машиной нашего коллеги? Его Mitsubishi прибыл к нам из Штатов. Обращаемся к таблице. И как «японка», и как «американка» машина должна радоваться нашему 92-му. И переход на 95-й ни динамики, ни экономичности ей не добавит.

Наиболее вероятно, что наш коллега неосознанно выдавал желаемое за действительное. Ему стоит установить бортовой компьютер или хотя бы позаправляться под пробку на одной и той же колонке недельку-другую, регулярно записывая данные расхода и пробега. Затем повторить замеры на другом сорте топлива. Правда, с учетом городских пробок результат все равно получится очень приблизительным.

Если экономия все-таки подтвердится, возможно несколько вариантов ее возникновения.

Первый и самый простой. Опре­де­ленная часть машин в силу суммирования допусков и иных технологических причин имеет характеристики, отличающиеся от паспортных. И это надо принять как данность.

Второе, менее оптимистическое. За годы эксплуатации в камере сгорания скопился нагар и другие отложения, ее объем уменьшился, а степень сжатия, соответственно, возросла. Что и «приспособило» двигатель под бензин с более высоким октановым числом. Лечится регулярным добавлением противонагарных присадок в бензин плюс длительной ездой на высокой скорости. Альтернативой присадке могло бы стать использование «чистящего» бензина Shell V-Power, но за отсутствие лишних хлопот придется расплачиваться. Если «химия» не поможет, то остается «механика». Впрочем, без более веских причин двигатель лучше не разбирать. Если «химия» поможет, скорее всего, двигатель придется подрегулировать.

Третье, самое сложное. Глючит система управления двигателем, зажигание, система рециркуляции отработавших газов. Замена блока управления - дело несложное, но очень дорогое. Стоит проконсультироваться у хорошего диагноста, если такого удастся найти. Как и специалиста по каталитическим нейтрализаторам.

Еще чуть-чуть теории

Многочисленные исследования в разных странах мира подтверждают, что переход на бензин с более высоким октановым числом при постоянной степени сжатия не дает никаких преимуществ, а только повышает расходы на топливо. Теплотворная способность, а значит, и запасенная энергия у разных сортов топлива примерно одинакова. Высокооктановый бензин выделяет столько же энергии, как и стандартный, но горит медленнее. В результате не успевшее сгореть топливо может быть выброшено в глушитель (смерть катализатору) и далее в атмосферу (смерть живому).

Более того, как утверждает сайт Gas Bank USA, производители автомобилей (BMW, Porsche, Mercedes-Benz и др.), даже рекомендуя высокооктановый бензин, допускают применение стандартного без угрозы для двигателя, но с некоторым ухудшением параметров автомобиля.

О том, каково это ухудшение, можно судить по данным, опубликованным Hyundai Motor. На бензине Premium 4,6-литровый двигатель V8 седана Genesis выдает максимальную мощность 375 л. с., а на стандартном (AKI-87) - 386, т. е. менее чем на 2% меньше.

В американском руководстве по эксплуатации Smart Fortwo приведено то же предупреждение, что и для автомобилей Mercedes: «Для обеспечения долгой надежной работы и высоких характеристик двигателя следует использовать бензин сорта Premium Unleaded». А в нижней строке: «Бензин Regular не причинит вреда вашему автомобилю».

Мы не призываем переходить на низкооктановый бензин. Но если ваш автомобиль под него и «заточен», есть ли смысл платить лишние деньги? При одинаковом химическом составе, равной энергоемкости и не зависящем от октанового числа использовании/неиспользовании присадок единственное отличие между сортами бензина - размер прибыли, получаемой продавцом топлива.

Полезные формулы

Определяя, какой бензин нужен вашей машине, полезно знать, что:
AKI = RON+MON/2;
RON - MON ≈ 8–10;
RON - AKI ≈ 4–5;
AKI 87usa= RON 92eu;
AKI 90 ≈ RON 95;
где:
AKI - Anti-Knock Index - антидетонационный коэффициент (США);
RON - Research Octane Number - октановое число по исследовательскому методу (ИОЧ);
MON - Motor Oil Number - октановое число по моторному методу (МОЧ).

Кандидат технических наук Лев Мачулин (г. Ухта)

Ни об одном показателе качества автомобильного бензина не ходит столько нелепых слухов и легенд, как об октановом числе. Слышали об этом числе и видели цифры на заправках 80-92-95-98 практически все, но что они означают, доподлинно известно немногим.

Томас Миджлей (1889-1944) - американский химик и механик, прославившийся открытием фреона и тетраэтилсвинца. Изобретатель первого электромеханического датчика детонации. Фото: Engineers Club of Dayton Foundation, Ohio, USA.

Первый испытательный двигатель компании Waukesha Motors (1929 г.). Фото: An Interna-tional Historic Mechanical Engineering Land-mark. The Waukesha CFR Fuel Research Engine / Waukesha Engine Division Dresser Industries Inc. - Bulletin No. 1163. - June 1980.

Октановые числа некоторых индивидуальных углеводородов по моторному методу (моторные октановые числа - ОЧМ).

Установка УИТ-85 - «рабочая лошадка» нефтезаводских лабораторий. Фото Льва Мачулина.

Многополосный ИК-спектрометр может определять октановое число только в руках профессионала. Фото Льва Мачулина.

Различия в условиях определения октанового числа по моторному и исследовательскому методам.

Несмотря на активную пропаганду альтернативных источников энергии, человечество продолжает потреблять автомобильный бензин с завидным аппетитом - в объёмах порядка миллиарда тонн в год. При этом горючее, заливаемое в бак автомобиля, должно соответствовать определённым требованиям качества. В противном случае двигатель не сможет продемонстрировать все свои возможности, а то и вовсе будет выведен из строя. Но что подразумевается под словами «качество бензина»? Раскрыв любой официальный документ, содержащий технические требования к качеству бензина, мы обнаружим таблицу с целым комплексом нормативов по более чем десятку параметров - испаряемости, плотности, окисляемости, содержанию различных компонентов, примесей и т. д. Причём требования эти большей частью совершенно идентичны для разных марок бензина. Иными словами, бензин, независимо от марки, должен быть чистым, прозрачным, обеспечивать лёгкость запуска мотора, не создавать в линиях подачи паровых пробок, не содержать откровенной отравы и давать в меру токсичный выхлоп. И лишь взгляд на верхнюю строку таблицы расставляет всё по местам.

Итак, основной показатель качества бензина, определяющий его марку (а попутно и ценовую категорию), - детонационная стойкость: способность воспламеняться и сгорать в цилиндрах двигателя без нежелательных взрывных процессов. Конечно, детонационное сгорание бензовоздушной смеси не способно разрушить двигатель наподобие тротиловой шашки. Но следует знать, что вместо положенных 20-40 м/с фронт пламени при детонации распространяется со скоростью 2000-2500 м/с, что сравнимо с классической взрывчаткой! Переход к столь ненормальному режиму сгорания обусловливается интенсификацией процессов предпламенного окисления паров бензина с образованием нестабильных органических перекисей, накопление которых выше определённого предела при некоторых условиях заканчивается самовоспламенением и взрывом. Вот тогда-то и начинаются самые действующие на нервы «звенящие» постукивания, последствия которых достаточно печальны - возникающие в двигателе гиперзвуковые ударные волны способны сдирать масляную плёнку со стенок гильзы, увеличивая износ цилиндра и поршневых колец. Повышается дымность выхлопа, возникает перегрев мотора и снижается его мощность, происходят местные разрушения камеры сгорания и поверхности поршня. Потому только детонационная стойкость - важнейшая характеристика бензина - при равенстве прочих параметров даёт ответ, можно ли заливать его в бак конкретной машины.

Спровоцировать детонацию может многое: неоправданное увеличение частоты оборотов двигателя, неправильный состав смеси, неверно отрегулированный угол опережения зажигания и т. д. Но всё это не относится к качеству бензина, да и мотор современного автомобиля спроектирован так, чтобы не создавать проблем на ровном месте. Основная же причина детонации - несоответствие детонационной стойкости бензина степени сжатия двигателя, то есть соотношению свободных объёмов его цилиндров в нижней и верхней мёртвых точках. Чем выше степень сжатия, тем эффективнее работает двигатель, тем бoльшую мощность можно получить с единицы объёма цилиндра. Поэтому степень сжатия у современных двигателей достаточно высокая. Но чем она выше, тем сильнее детонирует бензин!

Долгое время детонация была главным фактором, сдерживающим развитие бензиновых двигателей. И именно появление бензинов, устойчивых к детонации, способствовало стремительному рывку в области авиа- и автомобилестроения, фактически преобразившему мир. Располагая в середине 20-х годов ХХ века лишь тихоходными фанерными аэропланами и грузовиками-«полуторками», во Вторую мировую войну человечество вступило уже со скоростными цельнометаллическими самолётами, самоходной бронированной техникой и полностью обновлённым автопарком. И достигнут этот беспрецедентный рывок во многом благодаря успехам в борьбе с детонацией бензина, мерой устойчивости к которой является октановое число, с которым связано столько мифов.

Миф первый: октановое число характеризует содержание октана - наиболее ценного компонента бензина.

Самое нелепое заблуждение. Да, октан (нормальный насыщенный углеводород с брутто-формулой С8Н18) в небольших количествах и впрямь может присутствовать в бензине. Но боже упаси добавлять его туда специально! Вопреки распространённому мнению октановое число чистого октана умопомрачительно низко - оно даже ниже, чем у эталонного «антибустера» гептана, чье октановое число принято за ноль! То есть чем меньше октана в бензине, тем лучше. Но почему тогда число - октановое?

Напомним, что данный показатель отвечает не за состав, а за детонационную стойкость топлива. И называть его, по большому счёту, следовало бы не октановым, а изооктановым - ведь именно изооктан (по химической номенклатуре - 2,2,4-триметилпентан) принят в качестве эталона шкалы детонационной стойкости с номиналом в 100 пунктов. То есть если бензин детонирует так же, как смесь из 92 частей изооктана и 8 частей гептана, то говорят, что его октановое число равно 92. При этом самого изооктана в бензине может не быть. А уж октану там и вовсе делать нечего.

Миф второй: высокооктановый бензин горит быстрее и жарче, за счёт чего двигатель развивает бoльшую мощность.

Это не так. Напротив, высокооктановые бензины воспламеняются медленнее, чем низкооктановые, причём настолько, что в старых двигателях с небольшой степенью сжатия их применение вызывает прогар выпускных клапанов с проскоком пламени в глушитель. Так что не рассчитывайте поднять мощность мотора, заливая в бак бензин с избыточным октановым числом. Ничего хорошего из этого не выйдет. Кстати, именно по причине замедленного воспламенения высокооктановые бензины нормально сгорают в мощных двигателях с высокой степенью сжатия, в чём, собственно, и заключается их главная прелесть. Теплотворная же способность литра бензина больше зависит от его плотности.

Миф третий: октановое число не может быть больше 100.

Ещё как может! Чтобы правильно воспринять это странное заявление, поговорим немного о химии углеводородов - класса органических соединений, чьи молекулы состоят исключительно из атомов углерода и водорода. А бензин состоит именно из них.

Благодаря наличию у атомов углерода четырёхвалентных связей и их способности выстраивать цепочки соединения с участием этого элемента отличаются потрясающим разнообразием. То же касается и углеводородов - в них цепь атомов углерода может вытягиваться в линию, ветвиться, замыкаться в различного рода циклы. Добавим сюда возможность образовывать кратные связи, и станет понятно, что число возможных комбинаций атомов углерода и водорода практически неисчерпаемо. К счастью, состав бензина не настолько сложен - количество атомов углерода в содержащихся в нём углеводородах обычно не превышает десяти. Впрочем, и это даёт нам в итоге сотни и даже тысячи компонентов.

Так вот, выяснилось, что наиболее склонны к детонации углеводороды линейного строения (у химиков они именуются «нормальными»), которых традиционно много как в природном сырье, так и в прямогонных бензинах. Чем длиннее цепочка, тем ниже октановое число. Углеводороды, имеющие разветвлённое строение (они именуются изомерными), сопротивляются детонации гораздо лучше - неспроста эталоном детонационной стойкости признан упомянутый нами изооктан (по сути дела, пентан с тремя боковыми «отростками»). А что может быть лучше эталона?

Лучше оказались углеводороды с приятным названием «ароматические» (хотя пахнут они отнюдь не духами), имеющие в составе молекулы особый шестичленный цикл - бензольное кольцо. К ним относятся собственно бензол, а также его производные - метилбензол (толуол), этилбензол, диметилбензолы (ксилолы) и триметилбензолы (мезитилен, псевдокумол). Их октановые числа превышают 100. А ещё существуют особые присадки, также способные поднять октановое число бензина выше заветной сотни.

Чтобы идти в ногу со временем, нефтепереработчики создали сначала крекинг-процесс (увеличивающий выход бензина и его октановое число за счёт расщепления тяжёлых и линейных углеводородов), потом процесс риформинга (для наращивания октанового числа за счёт образования ароматических углеводородов). Да и производители присадок сложа руки не сидели. Казалось бы, для конструкторов настали золотые дни - повышай себе степень сжатия моторов и в ус не дуй. Но через некоторое время наступило отрезвление. Присадки отравили всё вокруг свинцом, а наращивать содержание ароматических углеводородов оказалось возможным только до определённого предела: начались проблемы как с их токсичностью, так и с банальным перегревом двигателей (в «ароматике» маловато водорода, и режим их горения довольно специфический). В результате степень сжатия моторов в 1980-х годах вынуждена была отыграть немного назад, а верхняя планка октанового числа на заправках так и не пробила потолок в 100 пунктов.

Миф четвёртый: октановое число можно измерить с помощью портативного прибора.

Мы не раз видели по телевизору, а некоторые и воочию, как приезжает на заправку фургончик передвижной лаборатории, из него выходит строгая тётенька в белом халате, раскрывает пластиковый чемоданчик, наливает бензин в какой-то прибор, пара нажатий кнопок, и - вуаля, получите предписание: «Ваш бензин не соответствует ГОСТу по октановому числу!» В этот момент вполне можно обвинить строгую тётеньку в профессиональной некомпетентности и… нарушении всё того же ГОСТа, вернее, технического регламента Евразийского союза, где чёрным по белому сказано, какими методами можно определять октановое число.

Октановое число относится к наиболее трудноопределяемым параметрам бензина. Стандартные арбитражные методы его количественной оценки предусматривают весьма затратные моторные испытания на стационарных стендовых установках, производящихся всего в четырёх странах мира (США, Россия, Германия, Китай) и недоступных массовому потребителю.

А началось всё в далеком 1882 году, когда внимание разработчиков первых бензиновых моторов привлёк тот факт, что на одном и том же двигателе, в одинаковых условиях бензины разного происхождения детонировали по-разному. Это наглядно показывало, что детонация зависит не только от двигателя, но и от свойств горючего. Так появилась новая характеристика топлива, получившая название детонационной стойкости (англ. knock resistance) и о которой мы уже рассказывали выше.

Впервые попытка её количественной оценки была предпринята в начале 1920-х годов английским инженером Гарри Рикардо из Royal Aircraft Establishment, известным конструктором автомобильных, танковых и авиационных двигателей. Им были созданы одноцилиндровые испытательные моторы с переменной степенью сжатия, для которых была разработана методика оценки детонационной стойкости по так называемой критической или наивысшей полезной степени сжатия, при которой начинается слышимая детонация. Метод этот в достаточной степени субъективен, однако принцип инициирования детонации с помощью увеличения степени сжатия оказался удачнее прочих (дросселирование, наддув, число оборотов, угол опережения зажигания, температурный режим и т. д.) и потому был использован в более поздних разработках.

В 1927 году с целью окончательного выбора пути количественной оценки склонности бензина к детонации в США был образован Кооперативный комитет по исследованию топлива (CFR), включивший представителей Американского института нефти, Ассоциации американских производителей, Национального бюро стандартов и Общества автомобильных инженеров. В том же году Джон Кэмпбелл из General Motors построил одноцилиндровый двигатель с переменной степенью сжатия, а Грэхем Эдгар из Ethyl Gasoline Corporation исследовал с его помощью образцы чистых углеводородов, включая нормальный гептан, выделенный им с помощью дистилляции смолы сосны Джеффри . В конечном итоге Эдгар пришел к выводу, что оптимальная пара в качестве эталонов - это упомянутые выше 2,2,4-триметилпентан и гептан - их детонационная стойкость радикально различалась, а температура кипения и летучесть были близки, что обеспечивало длительную сохранность готовых смесей.

Когда известный исследователь Томас А. Бойд из компании General Motors внёс в CFR предложение утвердить двигатель с переменной степенью сжатия в качестве основного средства для детонационных испытаний бензина, некоторые члены комитета высказали опасения, что такой двигатель будет слишком сложен для массового использования. Однако моторостроительная фирма Waukesha Engine Company из штата Висконсин (США) добровольно вызвалась построить прототип. Заказ комитета был выполнен за 45 дней. 14 января 1929 года на ежегодном собрании Общества автомобильных инженеров в Детройте первая установка Waukesha была с успехом продемонстрирована публике. Это убедило скептиков, и уже к ноябрю 1931 года была продана первая сотня испытательных двигателей, причём в числе заказчиков оказались такие лидеры мировой промышленности, как Standard Oil Co., Shell Petroleum, FIAT и др. Значительный вклад в совершенствование процедуры детонационных испытаний внёс и первооткрыватель антидетонационного эффекта тетраэтилсвинца Томас Миджлей. Он разработал электромеханический датчик детонации, реагирующий не на звук, а на скачки давления в камере сгорания, получивший в честь своего изобретателя название «игла Миджлея».

В 1940 году пятнадцать американских двигателей Вокеша было закуплено для нужд снабжения Красной Армии. А уже в 1949 году выпущен первый советский образец, дизайн которого полностью копировал заокеанский прототип.

Конечно, с тех пор кое-что изменилось - в блоках регулирования испытательных стендов появилась современная электронная начинка, иглу Миджлея сменили магнитострикционные датчики. Но, как и 90 лет назад, установки для определения октанового числа состоят из тех же составных частей: одноцилиндрового четырёхтактного двигателя с переменной степенью сжатия, тормозящего асинхронного электромотора, системы подготовки воздуха, трёх топливных бачков с карбюраторами без дроссельных заслонок, аппаратуры для измерения детонации и пульта управления. Не изменились и применяемые эталонные топлива - ими остаются изооктан и гептан. Эта не меняющаяся без малого век схема - уникальный пример стойкой приверженности традиции на фоне стремительного развития прочих отраслей техники.

И вот в этом царстве консерватизма, трудоёмкости и высоких цен появляется волшебный чемоданчик, измеряющий октановое число за десять секунд безо всякой громоздкой машинерии! Но что на самом деле он измеряет и стоит ли ему доверять?

Со стендовыми установками всё ясно - они обеспечивают стандартные условия испытания (степень сжатия, частоту оборотов, угол опережения зажигания, уровень топлива в карбюраторе, температуру смеси и проч.), измерение уровня детонации в камере сгорания и его сравнение с детонацией эталонов. Потому они и стоят дорого, и в обслуживании затратны, и требуют времени на одно испытание не менее 40 минут. А вот что измеряет чемоданчик, в котором нет ни мотора, ни датчика детонации? В подавляющем большинстве случаев «октанометр» представляет собой недорогой высокочастотный конденсатор наливного типа, измеряющий отнюдь не октановое число (измерить которое вообще невозможно, так как это условная величина), а импедансную электропроводность бензина, то есть, по сути, его диэлектрическую проницаемость. Какая связь между детонационной стойкостью и диэлектрической проницаемостью? Разумеется, о полноценной функциональной зависимости речь здесь не идёт. А вот некая корреляция с суммарным содержанием высокооктановых ароматических углеводородов наличествует, поскольку их диэлектрическая проницаемость резко выделяется на фоне прочих углеводородов бензина. Она-то, эта корреляция, и вводит в заблуждение - не берусь судить, добросовестное или злонамеренное - разработчиков подобного рода приборов. Как бы то ни было, но измеряют они одно, определяют другое, а результат выдают за третье. Автору в бытность свою начальником заводской лаборатории однажды пришлось разбираться с претензией потребителя, чей «октанометр» занизил результат аж на 20 пунктов, а всё потому, что бензин был более высокого экологического класса, с пониженным содержанием токсичных производных бензола и большей долей сравнительно безвредных, но также высокооктановых изомерных алканов.

Изредка попадаются экспресс-анализаторы более высокого уровня, определяющие октановое число по интегральному химическому составу, устанавливаемому, в свою очередь, по многополосному инфракрасному спектру пропускания бензина в интервале длин волн от 845 до 1045 нм. Данная техника воспроизводит результаты моторных испытаний гораздо лучше импедансных приборов, но и она оказывается бессильна, если заранее не откалибрована под конкретный технологический процесс, по которому бензин был выпущен. В этой-то детали и прячется дьявол. С учётом того, что продвинутая градуировочная модель инфракрасного анализатора имеет десятки степеней свободы, калибровать его можно годами, и для этого требуются всё те же моторные стенды и эталонные топлива. Плюс не следует забывать про неуглеводородные антидетонационные присадки (о них будет сказано ниже), гарантированно сбивающие с толку любой портативный анализатор. В результате спектральные инфракрасные приборы, хоть и получили путёвку в жизнь, но могут быть рекомендованы только для производственных лабораторий по контролю выпуска бензина и уж никак не для инспекций товарной продукции на АЗС. Да и стоит эта импортная техника десятки тысяч долларов. Дешевле, конечно, чем стендовые моторные установки, но тоже не всем по карману. Существуют и другие, с более приемлемым соотношением «цена - качество», методы экспресс-контроля октанового числа, но и им место также исключительно в заводских лабораториях.

Общий вывод по данному вопросу такой. Портативные приборы октановое число не измеряют хотя бы потому, что, в отличие от температуры, давления и прочих физических параметров, октановое число - объект не измерения, а определения, причём с весьма сложной процедурой. Дальнейшее зависит лишь от наличия функциональной связи между октановым числом и фактически измеряемыми параметрами, которая либо отсутствует (импедансные приборы), либо чересчур заковыриста (спектральные). Неспроста ни те, ни другие приборы никогда не признавались в качестве стандартных. Словом, если хотите действовать по закону, добро пожаловать в аккредитованную лабораторию с моторными стендами Waukesha CFR или УИТ-85 и приготовьте минимум 5000 руб. за одно испытание. А все чемоданчики - от лукавого.

Миф пятый: моторное октановое число определяют на двигателе, а исследовательское - безмоторным методом лабораторного анализа.

Да, водители со стажем, помнящие старую номенклатуру марок бензина (А-76, Аи-92), в курсе даже таких тонкостей, как разница между моторным и исследовательским октановыми числами. Но выводы делают неправильные.

Итак, сходу разрушим очередной миф - и моторное, и исследовательское октановые числа определяют на одних и тех же моторных испытательных стендах. Разница лишь в условиях проведения испытаний.

Как видно из таблицы, условия проведения испытаний по моторному методу более жёсткие; этот метод изначально имитировал езду по шоссе. Исследовательский метод в большей степени отражает особенности городской езды - на более низких оборотах, с частыми остановками. Как правило, исследовательское октановое число бензина выше моторного, причём эта разница тем больше, чем больше в нём ароматических углеводородов. По российской номенклатуре ныне указывают лишь исследовательское - оно больше и потому выглядит солиднее, но помните: моторное октановое число 95-го бензина может составлять всего лишь 85. В США на АЗС принято писать так называемое заправочное октановое число - среднеарифметическое моторного и исследовательского. Так что американский 88-й бензин по факту соответствует российскому 92-му, а 91-й - нашему 95-му. Что же касается нелогичных названий, то, как и в случае с самим октановым числом, все претензии к разработавшим их американцам.

Миф шестой: октановое число можно повысить только с помощью специальных присадок.

Этот миф родился в первой половине прошлого века, когда бензин получали преимущественно простой перегонкой (строго говоря, ректификацией, но для неспециалиста особой разницы между двумя этими процессами нет) с последующим добавлением «этиловой жидкости» на основе весьма эффективного (но, к сожалению, крайне ядовитого) металлоорганического антидетонатора - тетраэтилсвинца (ТЭС). Максимальное октановое число, которого удавалось достичь прямой перегонкой, составляло порядка 70-72, наиболее ходовой маркой неэтилированного бензина у нас был А-66, а все бензины с более высоким октановым числом (в особенности авиационные) были этилированные. Позже, с появлением и массовым распространением таких процессов облагораживания, как крекинг и риформинг, появилась возможность получать неэтилированные бензины с октановым числом вплоть до 87. Добавка ТЭС творила с ними поистине чудеса - читатель будет удивлён, но первый бензин с октановым числом 100 был получен в США ещё в 1937 году! Это позволило наладить производство мощных малогабаритных двигателей для самолётов с укороченным взлётом-пробегом и развернуть массовое строительство первых ударных авианосцев.

Годы шли, технологии совершенствовались, и в 1970-1980-х годах пришло осознание того, что санитарный и экологический ущерб, наносимый этилированным бензином, более не компенсируется его эффективностью. В настоящее время ТЭС запрещён практически во всех странах мира (в России разрешён к применению лишь в авиационных бензинах). В 2000-е годы под запрет попали и другие металлорганические антидетонаторы - такие, как циклопентадиенилтрикарбонилмарганец и ферроцен. В употреблении остались лишь так называемые беззольные антидетонаторы в виде простых эфиров и производных анилина. Но их употребляют преимущественно при необходимости «дотянуть» исследовательское октановое число конечного продукта каталитических процессов с 92 до 95-98. Использовать в качестве автомобильного бензина низкооктановую «прямогонку», нашпигованную присадками, сейчас никому не приходит в голову. Их потребуется столь много, что, подняв до нужного уровня один показатель, мы напрочь испортим все остальные.

Несколько слов об октан-бустерах, продающихся в автомагазинах. Моё отношение к ним скептическое - состав непонятен, эффективность сомнительная. Если мотор, что называется, «не тянет» - бустеры не помогут, проблема тут обычно лежит в другой плоскости. Если же при езде действительно проявляются признаки детонации - металлический стук «со звоном», дымный выхлоп, перегрев двигателя, - я бы рекомендовал возить с собой литровую бутылку нефтяного толуола или ксилола (продаются в хозяйственных магазинах в качестве растворителя, моторное октановое число 103), добавляя его в таких случаях в бензобак. Поскольку толуол и ксилол сами по себе являются топливом и в довольно значительных количествах содержатся в любом бензине, это наиболее надёжный и безопасный способ поднять его октановое число на пару-тройку пунктов, чего обычно бывает достаточно для устранения детонационных стуков. А вот экспериментировать с нафталином, как советуют некоторые «умельцы», не стоит. Октановое число у него действительно высокое (еще бы, сразу два бензольных кольца!), но склонность к нагарообразованию ещё выше. Твёрдые высококипящие вещества вообще не лучший вариант для использования в качестве компонентов моторных топлив.

И напоследок. Октановое число - величина, применяющаяся исключительно в отношении топлива для двигателей с искровым зажиганием. Технические условия на дизельное топливо и авиационный керосин такого показателя не содержат, там действуют совершенно иные характеристики воспламеняемости. Что хорошо для бензинового мотора, для дизеля категорически противопоказано. Как говорится - каждому своё.

Октановое число

Указание октановых чисел на американской АЗС.

Окта́новое число́ - показатель, характеризующий детонационную стойкость топлива (способность топлива противостоять самовоспламенению при сжатии) для двигателей внутреннего сгорания . Число равно содержанию (в процентах по объёму) изооктана (2,2,4-триметилпентана) в его смеси с н -гептаном , при котором эта смесь эквивалентна по детонационной стойкости исследуемому топливу в стандартных условиях испытаний.

Изооктан трудно окисляется даже при высоких степенях сжатия , и его детонационная стойкость условно принята за 100 единиц. Сгорание в двигателе н -гептана даже при невысоких степенях сжатия сопровождается детонацией , поэтому его детонационная стойкость принята за 0. Для бензинов с октановым числом выше 100 создана условная шкала, в которой используют изооктан с добавлением различных количеств тетраэтилсвинца .

Характерный металлический звон при детонации создаётся детонационной волной, многократно отражающейся от стенок цилиндра. При детонации снижается мощность двигателя и ускоряется его износ.

Испытание топлива

Испытания на детонационную стойкость проводят или на полноразмерном автомобильном двигателе, или на специальных установках с одноцилиндровым двигателем. На полноразмерных двигателях при стендовых испытаниях определяют т. н. фактическое октановое число (ФОЧ), а в дорожных условиях - дорожное октановое число (ДОЧ). На специальных установках с одноцилиндровым двигателем определение октанового числа принято проводить в двух режимах: более жёсткий (моторный метод) и менее жёсткий (исследовательский метод). Октановое число топлива, установленное исследовательским методом, как правило, несколько выше, чем октановое число, установленное моторным методом. Точность определения октанового числа, более правильно именуемая воспроизводимостью , составляет единицу. Это означает, что бензин с октановым числом 93 может показать на другой установке при соблюдении всех требований метода определения октанового числа (ASTM D2699, ASTM D2700, EN 25163, ISO 5163, ISO 5164, ГОСТ 511 , ГОСТ 8226) совсем другую величину, например 92. Существенным является то, что обе величины, 93 и 92, являются и точными, и правильными и при этом относятся к одному и тому же образцу топлива.

Виды октановых чисел: ОЧИ и ОЧМ

Исследовательское октановое число (ОЧИ) определяется на одноцилиндровой установке с переменной степенью сжатия , называемой УИТ-65 или УИТ-85, при частоте вращения коленчатого вала 600 об/мин, температуре всасываемого воздуха 52°С и угле опережения зажигания 13 град. Оно показывает, как ведёт себя бензин в режимах малых и средних нагрузок.

Моторное октановое число (ОЧМ) определяется так же на одноцилиндровой установке, при частоте вращения коленчатого вала 900 об/мин, температуре всасываемой смеси 149°С и переменном угле опережения зажигания. ОЧМ имеет более низкие значения, чем ОЧИ. ОЧМ характеризует поведение бензина на режимах больших нагрузок. Оказывает влияние на высокую скорость и детонацию при частичном дроссельном ускорении и работе двигателя под нагрузкой, движении в гору и т. д.

По крайней мере в 1950-х годах использовалось также октановое число по температурному методу .

Значения октанового числа углеводородов и различных видов топлива

Вещество ОЧМ ОЧИ
Метан 110,0 107,5
Пропан 100,0 105,7
н -бутан 91,0 93,6
Изобутан 99,0 101,1
н -пентан 61,7 61,7
Изопентан (2-метилбутан) 90,3 92,3
Изогексан (2,2-диметилбутан) 93,4 91,8
2,2,3-Триметилбутан 101,0 105,0
н -Гептан 0 0
Изооктан (2,2,4-триметилпентан) 100 100
1-Пентен 77,1 90,9
2-Метил-1-бутен 81,9 101,3
2-Метил-2-бутен 84,7 97,3
Метилциклопентан 80,0 91,3
Циклогексан 77,2 83,0
Бензол 111,6 113,0
Толуол 102,1 115,7
Бензины прямой перегонки 41-56 43-58
Бензины термического крекинга 65-70 70-75
Бензины каталитического крекинга 75-81 80-85
Бензины каталитического риформинга 77-86 83-97
Бензин Н-80((ОЧИ+ОЧМ)/2)) 76 84
Бензин АИ-92 83,5 92
Полимербензин 85 100
Алкилат 90 92
Алкилбензол 100 107
Этанол 100 105
Метил-трет -бутиловый эфир - 117

Разность между ОЧИ и ОЧМ характеризует чувствительность топлива к режиму работы двигателя.

Распределение октанового числа

Поскольку при эксплуатации полноразмерного двигателя при переменных режимах происходит фракционирование бензина, необходимо раздельно оценивать детонационную стойкость его различных фракций. Октановое число бензина, с учётом его фракционирования в двигателе, получило название «распределение октанового числа» (ОЧР). В связи со сложностью определения октанового числа на двигателях, разработаны методы косвенной оценки детонационной стойкости по физико-химическим показателям и характеристикам низкотемпературной реакции газофазного окисления, имитирующего предпламенные процессы.

Углеводороды , которые содержатся в топливах, значительно различаются по детонационной стойкости: наибольшее октановое число имеют ароматические углеводороды и парафиновые углеводороды (алканы) разветвлённого строения, наименьшее октановое число имеют парафиновые углеводороды нормального строения. Топлива нефтяного происхождения, полученные каталитическим риформингом и крекингом , имеют более высокие октановые числа, чем полученные при прямой перегонке.

Для повышения октанового числа топлив используются высокооктановые компоненты и антидетонационные присадки . Многие из них (например, МТБЭ) испаряются легче, чем бензин, что приводит к интересному эффекту у машин с негерметичным бензобаком - по мере расходования топлива и испарения присадки октановое число бензина, оставшегося в баке, уменьшается на несколько единиц. Это приводит к лёгкому звону при полной мощности мотора (если он не оборудован датчиком детонации). Подавляющее большинство современных инжекторных двигателей имеют датчики детонации, позволяющие использовать любой бензин с октановым числом 91-98, для двигателей с высокой степенью сжатия может быть необходимо использовать бензин с октановым числом не ниже 95 или даже 98.

Октановое число бензина - важный показатель. От него зависят эксплуатационные свойства топлива, динамические и другие характеристики автомобиля. Под данным понятием подразумевается мера стойкости к детонации (возгоранию) этого типа топлива. Существуют определенные стандарты для различных видов бензина. Различные типы двигателей рассчитаны на использование бензина с определенным октановым числом.

Что же такое октановое число?

Октановое число, это мера химической стойкости бензина к автоматическому зажиганию. Чем больше октановое число бензина, тем он устойчивее к возгоранию. А возгорание влечет за собой выход двигателя из строя. На что влияет октановое число? Дело в том, что во время такта сжатия поршень начинает сжимать топливно-воздушную смесь. Когда смесь оказывается под высоким давлением, она может самопроизвольно возгораться. Это серьезная проблема в том случае, когда смесь загорается до того, как ласт искру свеча зажигания. Самопроизвольное воспламенение, которое профессиональным языком называется «детонация» может спровоцировать появление громкого шума.

Грохот напоминает звон монет, которые вы кидаете в копилку. Звук и стон возникает по той причине, что самовоспламенение приводит к образованию волн высокого давления, которые сталкиваются между собой. Детонация может повредить внутренние компоненты двигателя. Возгорание легко расплавит поршневые отверстия, и даже погнет шатуны. В итоге двигатель придется ремонтировать. Однако в наше время этого практически не происходит по той причине, что производители используют компьютерные блоки управления двигателем.

Благодаря детонационным датчикам, которые представляют собой электронные преобразователи небольшого размера, закрепленные на блоке двигателя, могут обнаруживать характерные для детонации частоты. Когда датчики фиксируют появление частот, модуль, управляющий коробкой передач, выполняет ряд действий, направленных на возвращение контроля воздушно-топливной смеси. Блок либо понижает уровень наддува в двигателях, либо оттягивает время появления искры в свечах, либо откорректировать состав топливной смеси, дабы обезопасить двигатель от поломки.

На что влияет октановое число?

При работе автомобиля топливо в его двигателе перемешивается с воздухом, после чего полученная смесь поступает в камеру сгорания, где и поджигается при помощи искры. Если эта смесь не имеет достаточной стойкости к самовоспламенению, происходит взрыв с неприятными последствиями для двигателя.

Чтобы таких проблем не возникало, при производстве транспорта автомобильные концерны производят двигатели с высокой степенью сжатия.

Именно здесь и имеет значение октановое число. Двигатели с более высокой степенью сжатия требуют бензина, имеющего более высокое октановое число.

Как правило, их устанавливают в спортивные или представительские машины, то есть чем лучше и дороже транспорт, чем выше сжатие в его двигателе, тем выше должно быть октановое число в заправляемом топливе.

Как влияет использование бензина с повышенным или пониженным октановым числом на работу двигателя

Для каждой марки и модели автомобиля заводом-изготовителем предусмотрен бензин с определенным октановым числом. Узнать его можно из руководства по эксплуатации авто. Но что же произойдет, если не придерживаться рекомендаций?

Применение топлива с меньшим октановым числом, как мы уже знаем, ведет к детонации. Кроме этого увеличивается расход, снижается мощность двигателя, а при длительной нагрузке на него возможно прогорание клапанов, перегрев двигателя, выход из строя деталей поршневой группы. При использовании бензина с большим октановым числом ничего страшного не произойдет, разве, что немного снизится динамика за счет более длительного времени сгорания горючей смеси.

Ниже представлена таблица, из которой можно узнать, какое топливо лучше подойдет для двигателей с разной степенью сжатия.

Как понизить октановое число бензина

С недавнего времени с заправок исчез бензин с октановым числом 76 и 80. Но при этом большое количество техники, которая ещё на данный момент эксплуатируется, требует для своей нормальной работы именно такое топливо. Особенно часто возникают такие сложности с мотоблоками, выпущенными около 10 лет назад или же более. Приобретать новый - достаточно дорогостоящее мероприятие. Именно поэтому вопрос по поводу снижения октанового числа бензина очень актуален.

При заливке 92-го бензина вместо 80 или даже 76 двигатель обычно работает неровно, либо заводится и сразу глохнет. Потому прежде, чем использовать 92-ой, следует понизить его октановое число до приемлемого в конкретном случае. Существует несколько «народных» способов осуществить данную процедуру в домашних условиях: оставить канистру с бензином на открытом воздухе с незакрученной пробкой - каждый день величина октанового числа снижается на 0.5; использовать как добавку керосин - данный метод ранее использовался на старых автомобилях (достаточно сложно будет выбрать подходящие пропорции). При этом прежде, чем использовать такой метод, необходимо будет обязательно измерить величину октанового числа.

Степень сжатия и октановое число

Благодаря высокой степени сжатия двигатель вырабатывает больше мощности при меньшем сжигании топлива. Степень сжатия – показатель того, насколько плотно сжата топливно-воздушная в цилиндре. В современных двигателях степень сжатия 10 к 1, но если речь идет о двигателях с прямым впрыском топлива, то она может быть выше. Если двигатель с наддувом, то степень сжатия наоборот, меньше. Производители автомобилей должны знать тонкие нюансы, которые не приведут к возгоранию. Именно октановое число играет здесь большую роль. Высокая степень сжатия обычно у двигателей, которые используются в спорткарах. Они почти всегда нуждаются в топливе, у которого высокое октановое число, и которое реже воспламеняется. Бензин с высоким октановым числом, не влияет на расход горючего. Необходимо понимать, что высокое внутрицилиндровое давление требует горючего с более высоким октановым числом, для того, чтобы предостеречь двигатель от повреждений, вызванных самовоспламенением. Однако ошибиться может каждый, и залить в бак не тот сорт бензина.

Что будет, если в бензобак «подать» не тот бензин?

Если автомобиль требует горючего премиум класса, а вы залили бензин с октановым числом 87, при этом начинаете слышать внутри нехарактерные звуки, то вам необходимо очень деликатно обращаться с автомобилем до тех пор, пока вы не доедете до заправочной станции. Причем не всегда вы будете слышать какой-либо шум в двигателе. Неправильный «бензин» станет причиной снижения производительности. Расход топлива увеличится в разы. Тепло начнет попадать в выхлопной катализатор, в результате чего его прочность будет снижена. Не заливайте в бак бензин с меньшим октановым числом, чем вам порекомендовал производитель.

САМЫЕ РАСПРОСТРАНЁННЫЕ ПРИСАДКИ, ПОВЫШАЮЩИЕ ОКТАНОВОЕ ЧИСЛО

В последнее время химики постоянно работают над созданием различного рода присадок, способных максимизировать октановое число бензина. Повышение достигается посредством добавления в основной состав бензина различных ароматических и парафиновых углеводородов, все такие вещества являются алканами с разветвлённым строением. После добавления таких компонентов, естественно, октановое число возрастает на несколько ступеней, однако приобретённый запах в несколько раз неприятнее низкооктанового бензина. Ещё один минус бензина, оснащённого присадками, - это его летучесть. Когда топливо длительно хранится в открытой канистре или ёмкость воздействует с окружающей средой, октановое число бензина понижается, ввиду чего такого рода бензин лучше использовать пока он «свежий».

Во времена СССР, чтобы значительно повысить октановое число, в топливо добавляли тетраэтилсвинец, такое вещество являлось ядовитой смесью, одной из составляющих которой был свинец. Несмотря на прекрасную эффективность, которую тетраэтилсвинец показал на практике, его ядовитые свойства вкупе с быстрым уничтожением каталитических нейтрализаторов и лямбда-зондов, повсеместно встречаемых практически во всех современных машинах, с течением времени заставили учёных отказаться от его активного использования. Эту присадку впоследствии заменили средства, основанные на марганце, правда, сейчас они тоже находятся под запретом ввиду различных экологических соображений.

Довольно распространено среди «продвинутых» автолюбителей такое вещество, как ферроцен. Такого рода современная присадка содержит большое количество железа, из-за которого после длительного использования на свечах появляется трудно выводимый налёт, обладающий отличной токопроводностью, заметить его можно по яркому оттенку красноватого цвета. Этот налёт негативно сказывается на эксплуатационных характеристиках автомобиля, одновременно уменьшая работоспособность и срок службы свечей.

Можно встретить бензины, в которых повышение октанового числа достигается добавлением других присадок. Используемые примеси способны выполнять широкий спектр различных задач, наряду с уменьшением разного рода вредных примесей из топлива (серы и воды) они способны очистить детали силового агрегата и всей топливной системы. Наиболее безвредной на сегодняшний день для составляющих мотора является антидетонационная примесь, которая называется метилтретбутиловый эфир. С недавнего времени именно эта присадка широко распространена не только в России, но и на Украине, и в Европе. Посредством качественной примеси автовладелец может получить качественное топливо, такой бензин будет обладать октановым числом со 110 единицами. Стоит отметить, что это разновидность авиационного топлива. В бензин добавляется газовый конденсат, его октановое число всегда превышает отметку в 100 единиц.

92 или 95? Какой бензин лучше лить? Пару слов об октановом числе и степени сжатия. Просто о сложном

От октанового числа бензина зависят разные характеристики автомобиля, например, динамические или эксплуатационные свойства. Речь идёт о мере стойкости конкретного типа топлива к возгоранию (детонации). Для разных видов горючего разработаны отдельные стандарты, и именно они учитываются при подборе октанового числа для конкретного типа автомобильного двигателя. Рассмотрим подробнее, что такое октановое число бензина, как измерить данный параметр, как он влияет на характеристики бензина.

Понятие октанового числа

Октановое число представлено в виде меры, которая определяет химическую стойкость топлива к автоматическому зажиганию. Детонационная стойкость прямо пропорциональна величине ОЧ. Топливно-воздушная смесь сжимается под воздействием поршня во время такта сжатия. Высокое давление может спровоцировать самопроизвольное возгорание смеси, и это проблема, если детонация произошла до того, как свеча зажигания дала искру.

Сопровождается данный процесс шумовым эффектом, напоминающим звон монет в керамической копилке. Объяснить такие звуки можно образованием волн высокого давления, между которыми происходит столкновение.

Последствия самовозгорания могут быть представлены серьёзными повреждениями внутренних элементов мотора, поршневые отверстия могут расправиться, а шатуны погнуться. Двигатель выходит из строя.

С современными двигателями таких неприятностей практически не происходит благодаря наличию специальных компьютерных блоков управления. Соответствующие детонационные датчики монтируются на блок мотора и своевременно определяют частоты, указывающие на риск детонации.

После фиксации подобных частот управляющий КПП модуль возвращает контроль воздушно-топливной смеси. Происходит оттягивание момента появления искры в свечах, снижение уровня наддува в моторе или коррекция состава топливной смеси для предотвращения поломки.

Разработки автомобильных концертов ориентированы на предотвращение самовозгорания в узлах мотора, поэтому двигатели производятся с высокой степенью сжатия. В данном контексте именно октановое число имеет первостепенное значение, поскольку топливо с высоким октановым числом требуется для двигателей с высокой степенью сжатия. Применяются они преимущественно в представительских или спортивных автомобилях. Степень сжатия в современных авто может составлять 10 к 1, однако встречаются и более высокие показатели.

Конкретное ОЧ разработано заводом-изготовителем отдельно для каждый модели и марки машины. Характеристики такого рода указаны в инструкции по эксплуатации, но к чему приведет игнорирование рекомендаций?

Использование топливной жидкости с меньшим ОЧ, чем требуется, приводит к следующим последствиям:

  • детонация;
  • выход из строя элементов поршневой группы;
  • перегрев мотора;
  • прогорание клапанов;
  • снижение мощности мотора (читайте о );
  • повышение расхода.

Если же октановое число в топливе, наоборот, выше, чем нужно, последствия будут не такими плачевными. Речь идёт о незначительном снижении динамики, поскольку горючая смесь будет сгорать дольше.

Измерение октанового числа (ОЧИ и ОЧМ)

Определение октанового числа бензина возможно двумя методами – исследовательским и моторным. Поскольку полученные в результате данных манипуляций результаты различны, обозначаются они как ОЧИ и ОЧМ, соответственно. Соблюдение особых условий для реализации обоих методов является обязательной мерой. Первостепенно необходимо подобрать смеси эталонных углеводородов высокого качества с числом 100 (изооктан) и нормального n-гептана с числом 0.

На следующем этапе октановое число определяется с помощью специальной установки.

  1. ОЧИ – исследовательское октановое число, определяемое посредством одноцилиндровой установки с переменной степенью сжатия (УИТ-85 или 65). Частота вращения коленчатого вала должна составлять 60 об/мин, угол опережения зажигания – 13 градусов, а температура всасываемого воздуха – 52 градуса по Цельсию. В данном случае полученный показатель определяет поведение бензина в режимах средних и малых нагрузок.
  2. ОЧМ – моторное октановое число, для определения которого принято также использовать одноцилиндровую установку, однако температура всасываемой смеси должна составлять 149 градусов по Цельсию, а частота вращения коленчатого вала – 900 об/мин при переменном угле опережения зажигания. Значение ОЧМ ниже ОЧИ. В данном случае речь идёт о поведении топлива на режимах высоких нагрузок. Рассматриваемый параметр влияет на детонацию и высокую скорость при движении в гору, работе мотора под нагрузкой и частичном дроссельном ускорении.

Отдельно стоит рассмотреть третий способ определения октанового числа – использование специальных приборов, однако в данном случае стоит сразу ориентироваться на наличие погрешностей, поскольку точность таких измерений зачастую сомнительна.

Использование приборов

Абсолютно все приборы, используемые для измерения величины ОЧ, имеют единый принцип работы – определение диэлектрической проницаемости бензина, поскольку данный параметр пропорционально зависит от величины ОЧ. Обязательной мерой является составление специальной калибровочной зависимости с целью получения максимально точной величины. Данная зависимость строится с учётом н-гептана и топлива с известной величиной октанового числа.

Среди наиболее распространённых устройств импортного и отечественного производства можно выделить следующие.

  1. ОКТИС – прибор российского производства стоимостью в 3 500 рублей считается наиболее известным и востребованным.
  2. Digatron позиционируется как более надёжное и точное устройство, стоимость достигает 700 евро. Прибор нашёл применение в картинге и других видах спорта.
  3. ОКТАН-ИМ отличается наличием 10 калибровок и встроенной внутренней памятью. Демонстрирует максимально высокую точность показаний.
  4. ОКТАНОМЕТР ПЭ-7300 М обойдётся ориентировочно в 50 — 60 тысяч рублей. Отличается наличием встроенного программного обеспечения и возможностью подключения к ПК. Допускается учёт показателя температурного режима.
  5. SHATOX SX-100M – импортный аналог, стоимость которого достигает 1 800 долларов. Присутствует встроенный датчик определения температуры. Определение данного показателя осуществляется программным методом.

Стоит отметить, что ОЧ согласно измерениям приборов может существенно отличаться в зависимости от производителя топлива из-за разной калибровочной зависимости. Построение индивидуальных калибровок для каждого случая является обязательной мерой. Бензин конкретного производителя принято использовать в качестве стандарта.

Среди недостатков рассматриваемого способа определения ОЧ можно выделить сложность определения разных внешних факторов, которые могут влиять на процесс измерения. Также недостатком считается невозможность анализа неидентифицированного топлива, поскольку анализ изначально основан на сравнении.

Повышение ОЧ

Часто водители интересуются, как повысить октановое число бензина или понизить данный показатель. Повышение ОЧ считается более простым процессом, чем понижение. Это может быть добавление специального антидетонатора или использование сложного технологического процесса. Именно первому варианту принято отдавать предпочтение.

В качестве антидетонаторов могут использоваться следующие вещества.

  1. Спиртовые добавки позволяют добиться повышения ОЧ примерно на 3 единицы, если речь идёт о добавлении 1/10 части этилового спирта в 92 бензин. В итоге мы получим 95 топливо. Токсичность выхлопа также снизится соответствующим образом, однако давление паров быстро возрастёт, из-за чего в системе топливопровода могут образоваться паровые пробки. Также не стоит забывать о гигроскопичности спирта. Полученное таким путём топливо необходимо хранить соответствующим образом и контролировать количество воды в смеси. Если в двигатель попадёт вода, последствия могут потребовать дорогостоящего ремонта.
  2. Тетраэтилсвинец ранее использовался производителями для увеличения стойкости к детонации (с 1921 года). Вещество обладает повышенными антидетонационными показателями, однако относится к категории сверхядовитых и способствует выходу из строя кислородных датчиков выхлопной системы и катализаторов. Химическая формула вещества Pb(C2H5)4, закипает оно при температуре в 2 000 градусов по Цельсию, отличается высокими показателями вязкости. Повышение октанового числа с помощь данной добавки происходит на 17 единиц. Поскольку сгорание вещества приводит к образованию оксида свинца и он оседает на внутренних элементах мотора, вызывая нагар на поршнях и клапанах, в чистом виде его не использовали. В качестве добавки к тетраэтилсвинцу использовались продукты, способствующие выведению оксида свинца – дибромэтан, дибромпропан или бромистый этил.
  3. Более безопасным является использование специальных присадок в виде парафиновых и ароматических углеводородов. В большинстве случаев их использование требует герметичного хранения бензина из-за высокой степени летучести таких компонентов. Повысить ОЧ посредством присадок можно и самостоятельно. Достаточно просто приобрести одну из них и добавить в бензин. Как вариант, можно использовать ASTROhim Октан Плюс, повышающий ОЧ на 3 — 5 единиц, Lavr Next Octane Plus, повышающий ОЧ до 6 единиц, «Октан Плюс» Octane Plus, способствующий повышению ОЧ на 2 — 2,5 единицы, а также метилтретбутиловый эфир.

Понижение ОЧ

Поскольку продажа 76-го и 80-го бензина на заправках от недавнего времени прекратилась, возникла необходимость понижать октановое число топлива, поскольку техника, работающая на бензине с низким октановым числом, эксплуатируется до сих пор. В качестве примера можно привести модели мотоблоков, которые были выпущены 10 лет назад или раньше.

Случайные статьи

Вверх