Реактивное движение – движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части. Презентация к уроку- реактивное движение Реактивное движение в природе презентация по физике

Cлайд 1

Cлайд 2

Вывод формулы скорости ракеты при взлете Согласно третьему закону Ньютона: F1 = - F2, где F1 – сила, с которой ракета действует на раскаленные газы, а F2 – сила, с которой газы отталкивают от себя ракету. Модули этих сил равны: F1 = F2. Именно сила F2 является реактивной силой. Рассчитаем скорость, которую может приобрести ракета. Если импульс выброшенных газов равен Vг mг, а импульс ракеты Vр mр, то по закону сохранения импульса, получаем: Vг mг = Vр mр, Откуда скорость ракеты: Vр = Vг mг /mр

Cлайд 3

Константин Эдуардович Циолковский Идея использования ракет для космических полетов была выдвинута в начале 20 – го века русским ученым, изобретателем и учителем Константином Эдуардовичем Циалковским. Циалковский разработал теорию движения ракет, вывел формулу для расчета их скорости, был первым, кто предложил использовать многоступенчатые ракеты.

Cлайд 4

Первый космонавт планеты и главный конструктор отечественной ракетно-космической техники Сергей Павлович Королёв – советский ученый и конструктор, руководитель всех космических полетов. Юрий Алексеевич Гагарин – первый космонавт, совершил облет Земли 12 апреля 1961 г. за 1 час 48 минут на корабле «Восток».

Cлайд 5

Реактивное движение Реактивное движение происходит за счёт того, что от тела отделяется и движется какая-то его часть, в результате чего само тело приобретает противоположно направленный импульс.

Cлайд 6

Принцип реактивного движения находит широкое практическое применение в авиации и космонавтики. В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости. Поэтому для космических полётов могут быть использованы только реактивные летательные аппараты, т.е. ракеты.

Cлайд 7

Наглядная схема устройства одноступенчатой ракеты. В любой ракете независимо от ее конструкции всегда имеется оболочка и топливо с окислителем. На рисунке изображена ракета в разрезе. Мы видим, что оболочка ракеты включает в себя полезный груз (космический корабль), приборный отсек и двигатель (камера сгорания, насосы и пр.).

Cлайд 8

Многоступенчатые ракеты В практике космических полетов обычно используют многоступенчатые ракеты, развивающие гораздо большие скорости и предназначеные для более дальних полетов. На рисунке показана схема такой ракеты. После того как топливо и окислитель первой ступени будут израсходованы, эта ступень автоматически отбрасывается и в действие вступает двигатель второй ступени и т.д. Уменьшение общей массы ракеты путем отбрасывания уже ненужной ступени позволяет сэкономить топливо и окислитель и увеличить скорость ракеты.

Реактивное движение в природе

Реактивное движение – это движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.

Реактивная сила возникает без какого-либо взаимодействия с внешними телами.


Применение реактивного движения в природе

  • Многие из нас в своей жизни встречались во время купания в море с медузами. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техноизобретений.


  • Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.

  • Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету.

  • Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Он передвигается по принципу реактивного движения, вбирая в себя воду, а затем с огромной силой проталкивая ее через особое отверстие - "воронку", и с большой скоростью (около 70 км\час) двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой и он приобретает обтекаемую форму.

Летающий кальмар

Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.


  • Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.

  • В южных странах (и у нас на побережье Черного моря тоже) произрастает растение под названием "бешеный огурец". Стоит только слегка прикоснуться к созревшему плоду, похожему на огурец, как он отскакивает от плодоножки, а через образовавшееся отверстие из плода со скоростью до 10 м/с вылетает жидкость с семенами. Стреляет бешеный огурец (иначе его называют «дамский пистолет») более чем на 12 м.

Слайд 2

Применение реактивного движения в природе

Многие из нас в своей жизни встречались во время купания в море с медузами. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техноизобретений.

Слайд 3

Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами.

Слайд 4

Каракатица

Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.

Слайд 5

Кальмар

Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет)

Слайд 6

Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Он передвигается по принципу реактивного движения, вбирая в себя воду, а затем с огромной силой проталкивая ее через особое отверстие - "воронку", и с большой скоростью (около 70 км\час) двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой и он приобретает обтекаемую форму.

Слайд 7

Летающий кальмар

Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.

Слайд 8

Осьминог

Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.

План-конспект урока: «Реактивное движение. Освоение космоса»

Цели и задачи:

1. Развивающие: ознакомление с применением реактивного движения.

2. Образовательные: изучение принципа и теории реактивного движения.

3. Воспитательные: ознакомление с историей развития реактивного движения и учеными, работавшими в развитии и применении реактивного движения.

Оснащение урока:

1. Учебно – методический комплект «Физика 9».

2. Плакат «Многоступенчатая ракета».

3. Комъютер, видеопроектор, С D «Открытая физика», экран.

4. Модель ракеты.

План урока.

Повторение

Что такое импульс?

Почему импульс является векторной величиной?

Как направлен импульс?

Назовите единицу измеренния импульса?

Основное свойство импульса…

Почему при стрельбе приклад оружия нужно плотно прижимать к плечу?

План урока.

Реактивным движением называется движение возникающее при отделении от системы некотрой массы с опредлённой скоростью.

Реактивное движение в природе: медузы, кальмары и т.д.

Закон сохранения импульса для системы ракета – газы.

Для системы ракета-газы согласно закона сохранения импульса имеем:

m г v 0г + m р v 0р= m г v г + m р v р

Так как v 0г = 0 и v 0р = 0,

то m г v г + m р v р = 0, откуда

m р v р = - m г v г и

v р = - m г v г/ m р

Первый искусственный спутник Земли

4 октября 1957 года человечество вступило в эру освоения космического пространства. В этот день на околоземную орбиту был выведен первый в мире советский искусственный спутник Земли. Советские ученые и инженеры решили сложнейшие научно-технические проблемы, связанные с созданием ракетно-космической техники и обеспечением космического полета. Это выдающееся достижение стало убедительным свидетельством неисчерпаемых возможностей человеческого разума, ярко продемонстрировало передо вон уровень науки и техники в нашей стране.
Ракета-носитель, обеспечив в конце активного участка первую космическую скорость, равную 7,9 км/сек, вывела спутник на геоцентрическую (околоземную) орбиту с максимальным удалением от поверхности Земли (в апогее) 947 км и минимальным удавлением (в перигее) 228 км. Вес спутника составлял 83,6 кг, его корпус имел форму шара диаметром 0,58м.
Три недели активно работал первый космический исследователь. С его помощью были проведены первые измерения плотности атмосферы, получены данные по распространению радиосигналов в ионосфере.
Первые витки спутника стали первыми шагами мировой космонавтики.

Первый отечественный пассажирский реактивный самолет – Ту -104.

Реактивное движение в авиации и артиллерии.

Повторение. Обобщение

По какому принципу движутся медузы и каракатицы?

В чем сущность реактивного движения?

Может ли ракета двигаться в пустоте?
Может ли привести в движение парусник вентилятор, установленный на палубе?
Отчего зависит скорость ракеты?

Поясните идею многоступенчатой ракеты?

Домашнее задание: § 22, повтроить § 21; №№ 351, 353 (дополнительно).

Серов Дмитрий

Данная презентация содержит основной и дополнительный материал по реактивному движению, его проявление и испоьзование. Материал охватывает межпредметные связи, приводятся интересные технические и исторические справки.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

РЕАКТИВНОЕ ДВИЖЕНИЕ

Реактивное движение Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью V относительно тела, например при истечении продуктов горения из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила F , толкающая тело.

Реактивная сила возникает без какого-либо взаимодействия с внешними телами. Например, если запастись достаточным количеством мячей, то лодку можно разогнать и без помощи весел, действием только одних внутренних сил. Толкая мяч, человек (а значит и лодка) сам получает толчок согласно закону сохранения импульса.

Реактивное движение – единственный вид движения, который может осуществляться без взаимодействия с окружающей средой

В конце первого тысячелетия нашей эры в Китае использовали реактивное движение, которое приводило в действие ракеты - бамбуковые трубки, начиненные порохом, они использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону

Реактивное движение живых организмов По принципу реактивного движения передвигаются некоторые представители животного мира, например, кальмары и осьминоги. Они способны развивать скорость 60 - 70 км/ч.

Кальмар и осьминог движутся реактивным образом. Всасывая и с силой выталкивая воду, они скользят в волнах, точно живые ракеты. Бешеный огурец растет на побережье Черного моря. Стоит только слегка прикоснуться к созревшему плоду,похожему на огурчик, как он отскакивает от плодоножки, а через образовавшееся отверстие из плода фонтаном бьют семена со слизью. Каракатица, медузы забирают воду в жаберную полость через щель, а затем энергично выпрыскивают струю воды через воронку тем самым довольно быстро плывут задней стороной тела вперед. Примеры реактивного движения в природе

великий русский учёный и изобретатель, открыл принцип реактивного движения, которого по праву считают основоположником ракетной техники Константин Эдуардович Циолковский (1857-1935)

Подвиньте соломинку к одному из стульев и липкой лентой прикрепите к ней шарик. Подвиньте шарик к одному из стульев и отвяжите отверстие. Соломинка с прикрепленным к ней шариком скользит по бечёвке и перестаёт двигаться при упоре в стул или при выходе всего воздуха. Опыт с воздушным шариком

Примеры реактивного движения в технике Практическое использование принципа реактивного движения: в самолетах, движущихся со скоростью в несколько тысяч километров в час, в снарядах знаменитых « Катюш», в боевых и космических ракетах

Любая ракета состоит из двух основных частей. 1) Оболочка. 2) Топливо с окислителем. Оболочка включает в себя: а) Полезный груз (космический корабль). б) Приборный отсек. в) Двигатель. Топливо и окислитель Керосин, спирт, гидразин, Азотная или хлорная кислота, анилин, бензин жидкий кислород, фтор Они подаются в камеру сгорания, где превращаются в газ высокой температуры, который через сопло устремляется наружу. При истечении продуктов сгорания топлива газы в камере сгорания получают некоторую скорость относительно ракеты и, следовательно некоторый импульс. Поэтому сама ракета по закону сохранения импульса получает такой же по модулю импульс, но направленный в противоположную сторону.

Если корабль должен совершить посадку, то ракету разворачивают на 180 градусов, чтобы сопло оказалось впереди. Тогда вырывающийся из ракеты газ сообщает ей импульс, направленный против её скорости

Формула Циолковского υ = υ 0 + 2,3 υ г Ĺġ(1+ m/M)‏ υ 0 - начальная скорость. υ г - скорость истечения газов. m - начальная масса. M - масса пустой ракеты. Т. к. газ выбрасывается не мгновенно, поэтому и уравнение Циолковского получается значительно сложнее.

Ракетный двигатель Зенитная управляемая ракета российского комплекса « Стрела 10М3 » способна поражать цели на расстоянии до 5 км и на высоте от 25 до 3500 м. РАКЕТНЫЙ ДВИГАТЕЛЬ - реактивный двигатель, не использующий для работы окружающую среду (воздух, воду). Распространены химические ракетные двигатели (разрабатывают и испытывают электрические, ядерные и другие ракетные двигатели). Простейший ракетный двигатель работает на сжатом газе. По назначению различают разгонные, тормозные, управляющие и др. Применяют на ракетах (отсюда название), самолетах и др. Основной двигатель в космонавтике.

Спасибо за внимание

Случайные статьи

Вверх