Рубашка охлаждения. Система охлаждения двигателя автомобиля

Сегодня из нашей постоянной рубрики «Как это работает » Вы узнаете устройство и принцип работы системы охлаждения двигателя , для чего нужен термостат и радиатор , а так же почему не получила широкого распространения воздушная система охлаждения .

Система охлаждения двигателя внутреннего сгорания осуществляет отвод теплоты от деталей двигателя и передачу её в окружающую среду. Кроме основной функции система выполняет ряд второстепенных: охлаждение масла в системе смазки; нагрев воздуха в системе отопления и кондиционирования; охлаждение отработавших газов и др.

При сгорании рабочей смеси, температура в цилиндре может достигать 2500°С, в то время как рабочая температура ДВС составляет 80-90°С. Именно для поддержания оптимального температурного режима существует система охлаждения, которая может быть следующих типов, в зависимости от теплоносителя: жидкостная, воздушная и комбинированная . Следует отметить, что жидкостная система в чистом виде уже практически не используется , так как не способна длительное время поддерживать работу современных двигателей в оптимальном тепловом режиме.

Комбинированная система охлаждения двигателя:

В комбинированной системе охлаждения в качестве охлаждающей жидкости часто используется вода , так как имеет высокую удельную теплоемкость, доступность и безвредность для организма. Однако вода имеет ряд существенных недостатков: образование накипи и замерзание при отрицательных температурах . В зимнее время года в систему охлаждения необходимо заливать низкозамерзающие жидкости - антифризы (водные растворы этиленгликоля, смеси воды со спиртом или с глицерином, с добавками углеводородов и др.).


Рассматриваемая система охлаждения состоит из: жидкостного насоса, радиатора, термостата, расширительного бачка, рубашки охлаждения цилиндров и головок, вентилятора, датчика температуры и подводящих шлангов.

Стоит оговорить, что охлаждение двигателя принудительное, а значит в нём поддерживается избыточное давление (до 100 кПа), вследствие чего температура кипения охлаждающей жидкости повышается до 120°С .

При запуске холодного двигателя происходит его постепенный нагрев. Первое время охлаждающая жидкость, под действием жидкостного насоса, циркулирует по малому кругу , то есть в полостях между стенками цилиндров и стенками двигателя (рубашка охлаждения), не попадая в радиатор. Это ограничение необходимо для быстрого введения двигателя в эффективный тепловой режим. Когда температура двигателя превышает оптимальные значения, охлаждающая жидкость начинает циркулировать через радиатор, где активно охлаждается (называют большим кругом циркуляции ).


Устройство и принцип работы:

ЖИДКОСТНОЙ НАСОС . Насос обеспечивает принудительную циркуляцию жидкости в системе охлаждения двигателя. Чаще всего применяют лопастные насосы центробежного типа.

Вал 6 насоса установлен в крышке 4 с использованием подшипника 5. На конце вала напрессована литая чугунная крыльчатка 1. При вращении вала насоса охлаждающая жидкость через патрубок 7 поступает к центру крыльчатки, захватывается ее лопастями, отбрасывается к корпусу 2 насоса под действием центробежной силы и через окно 3 в корпусе направляется в рубашку охлаждения блока цилиндров двигателя.

РАДИАТОР обеспечивает отвод теплоты охлаждающей жидкости в окружающую среду. Радиатор состоит из верхнего и нижнего бачков и сердцевины. Его крепят на автомобиле на резиновых подушках с пружинами.

Наиболее распространены трубчатые и пластинчатые радиаторы. У первых сердцевина образована несколькими рядами латунных трубок, пропущенных через горизонтальные пластины, увеличивающие поверхность охлаждения и придающие радиатору жесткость. У вторых сердцевина состоит из одного ряда плоских латунных трубок, каждая из которых изготовлена из спаянных между собой по краям гофрированных пластин. Верхний бачок имеет заливную горловину и пароотводную трубку. Горловина радиатора герметически закрывается пробкой, имеющей два клапана: паровой для снижения давления при закипании жидкости, который открывается при избыточном давлении свыше 40 кПа (0,4 кгс/см2), и воздушный, пропускающий воздух в систему при снижении давления вследствие охлаждения жидкости и этим предохраняющий трубки радиатора от сплющивания атмосферным давлением. Используются и алюминиевые радиаторы : они дешевле и легче, но теплообменные свойства и надёжность ниже .

Охлаждающая жидкость «бегая» по трубкам радиатора, охлаждается при движении встречным потоком воздуха.

ВЕНТИЛЯТОР усиливает поток воздуха через сердцевину радиатора. Ступицу вентилятора крепят на валу жидкостного насоса. Они вместе приводятся во вращение от шкива коленчатого вала ремнями. Вентилятор заключен в установленный на рамке радиатора кожух, что способствует увеличению скорости потока воздуха, проходящего через радиатор. Чаще всего применяют четырех- и шестилопастные вентиляторы.

ДАТЧИК температуры охлаждающей жидкости относится к элементам управления и предназначен для установления значения контролируемого параметра и дельнейшего его преобразования в электрический импульс. Электронный блок управления получает данный импульс и посылает определенные сигналы исполнительным устройствам. При помощи датчика охлаждающей жидкости компьютер определяет количество топлива, требуемое для нормальной работы ДВС. Также, основываясь на показаниях датчика температуры охлаждающей жидкости блок управления, формирует команду включения вентилятора.

Воздушная система охлаждения:

В воздушной системе охлаждения отвод теплоты от стенок камер сгорания и цилиндров двигателя осуществляется принудительно потоком воздуха, создаваемым мощным вентилятором. Эта система охлаждения является самой простой , так как не требует сложных деталей и систем управления. Интенсивность воздушного охлаждения двигателей существенно зависит от организации направления потока воздуха и расположения вентилятора.

В рядных двигателях вентиляторы располагают спереди, сбоку или объединяют с маховиком, а в V- образных - обычно в развале между цилиндрами. В зависимости от расположения вентилятора цилиндры охлаждаются воздухом, который нагнетается или просасывается через систему охлаждения.

Оптимальным температурным режимом двигателя с воздушным охлаждением считается такой, при котором температура масла в смазочной системе двигателя составляет 70... 110°С на всех режимах работы двигателя. Это возможно при условии, что с охлаждающим воздухом рассеивается в окружающую среду до 35 % теплоты, которая выделяется при сгорании топлива в цилиндрах двигателя.

Воздушная система охлаждения уменьшает время прогрева двигателя, обеспечивает стабильный отвод теплоты от стенок камер сгорания и цилиндров двигателя, более надежна и удобна в эксплуатации, проста в обслуживании, более технологична при заднем расположении двигателя, переохлаждение двигателя маловероятно . Однако воздушная система охлаждения увеличивает габаритные размеры двигателя , создает повышенный шум при работе двигателя, сложнее в производстве и требует применения более качественных горюче-смазочных материалов. Теплоёмкость воздуха мала , что не позволяет равномерно отводить от двигателя большое количество тепла и, соответственно, создавать компактные мощные силовые установки.


К атегория:

Автомобили и трактора



-

Основные элементы жидкостном системы охлаждения


Рубашка охлаждения - пространство между двойными стенками блока и головки блока цилиндров или между стенками блока и мокрыми гильзами.

Для обеспечения равномерного охлаждения всех цилиндров жидкость в рубашку охлаждения поступает по распределительной трубе, идущей вдоль верхней части блока цилиндров. В трубе имеются отверстия для подачи жидкости в первую очередь к наиболее нагретым частям двигателя. Не имеют распределительных труб V-образные шести- и восьмицилиндровые двигатели, так как в каждом ряду у этих двигателей расположено всего три-четыре цилиндра.

Радиатор служит для охлаждения жидкости, поступающей из рубашки охлаждения. Радиатор (рис. 37, а) состоит из верхнего и нижнего резервуаров (бачков) и сердцевины, в которой и происходит охлаждение жидкости. В бачках имеются патрубки, соединяемые с патрубками двигателя. В верхнем бачке имеется горловина (через которую заливается жидкость), закрываемая пробкой. Внутри бачка или в горловину впаяна пароотводная трубка. которая отводит пар из системы в случае ‘ закипания жидкости, предотвращая увеличение давления в системе. В нижнем бачке или в патрубке монтируется краник для слива жидкости из радиатора.



-

Рис. 36. Система охлаждения двигателя СМД-14

Сердцевины радиаторов бывают труб-чато-пластинчатые, трубчато-ленточные и пластинчатые (рис. 37, б, в, г). Для придания радиатору большей прочности с обеих сторон сердцевины припаяны жесткие боковины. Радиатор вмонтирован в рамку (см. рис. 37, а), которая крепится к поперечным рамам на резиновых подушках или на пружинах, которые обеспечивают мягкость и эластичность крепления.

Патрубки бачков радиатора соединены с патрубками двигателя гибкими шлангами, которые закреплены на патрубках стяжными хомутами.

Заливная горловина радиатора закрывается специальной пробкой (рис. 38, а), имеющей паровой и воздушный клапаны. Пароотводная трубка впаяна сбоку в горловину над клапанами пробки. В случае возникновения разрежения, равного 0,002-0,01 МПа, воздушный клапан открывается и впускает в верхний бачок воздух из атмосферы. Паровой клапан открывается и выпускает пар из верхнего бачка в атмосферу через пароотводную трубку при повышении избыточного давления в нем до 0,03 МПа (рис. 38, б). Пробка с паровоздушным клапаном унифицирована для большинства отечественных автомобилей и тракторов.

У некоторых тракторных двигателей паровоздушный клапан помещается в отдельном корпусе, который крепится к верхнему бачку радиатора.

Для регулирования интенсивности обдува радиатора встречным потоком воздуха служат жалюзи или шторки радиатора. Они состоят из отдельных пластин-створок (рис. 39), укрепленных шар-нирно впереди радиатора. С помощью тяги/и системы рычагов пластины поворачиваются вокруг своей оси на угол до 90°.

Водяной насос служит для осуществления принудительной циркуляции охлаждающей жидкости. На двигателях с принудительным охлаждением устанавливаются центробежные насосы большой производительности, создающие давление на линии нагнетания от 0,05 до 0,2 МПа. У большинства моделей двигателей водяной насос установлен на одном валике с вентилятором и приводится в действие от коленчатого вала клино-ременной передачей.

Рис. 37. Радиатор системы охлаждения

Рис. 38. Пробка радиатора:
а - открыт паровой клапан; б - открыт воздушный клапан

Рис. 39. Жалюзи радиатора

Принципиальная схема насоса показана на рис. 40, а. Поступающая к патрубку вода подхватывается лопастями крыльчатки и центробежной силой отбрасывается в выходной патрубок, который расположен по касательной к корпусу насоса.

Вал (рис. 40, б) насоса вращается в двух шарикоподшипниках, имеющих уплотнения для удержания смазки в подшипниках и защиты их от загрязнения. Место выхода заднего конца вала из корпуса подшипников уплотнено манжетой, которая состоит из графитизированной текстолитовой шайбы, резинового уплотнителя пружины с двумя обоймами. Полость между подшипниками заполняют смазкой через масленку. На заднем конце вала установлена крыльчатка, которая вращается в корпусе насоса. На переднем конце вала с помощью разрезной конусной втулки и шпонки крепится ступица вентилятора. Такое крепление дает возможность подтягивать ступицу при ослаблении посадки шкива. Привод насоса и вентилятора осуществляется клиновыми ремнями.

При работе насоса охлаждающая жидкость по подводящему патрубку из нижнего бачка радиатора поступает внутрь корпуса. При вращении крыльчатки жидкость отбрасывается центробежной силой к стенкам корпуса и через выходной канал под давлением поступает в рубашку охлаждения двигателя и далее в верхний бачок радиатора.

Вентилятор служит для создания воздушного потока, который охлаждает жидкость в радиаторе и поверхность двигателя.

Вентилятор состоит из вала со шкивом и лопастями, который установлен на подшипниках в общем корпусе с водяным насосом. На наружном конце вала закрепляется ступица, к которой прикрепляются шкив и вентилятор. По числу лопастей вентиляторы бывают двух-, четырех-, пяти,- шести- и восьмилопастные. Наибольшее распространение получили вентиляторы с четырьмя и шестью лопастями. Вентилятор устанавливается за радиатором перед двигателем. Для создания направленного потока воздуха часто устанавливается направляющий кожух, значительно повышающий интенсивность охлаждения. Для уменьшения вибрации и шума лопасти вентилятора располагают крестообразно, попарно под углами 70° или 110°. Лопасти изготовляются штамповкой из листовой стали толщиной 1,25- 1,8 мм и крепятся к ступице шкива. Ширина лопастей обычно не превышает 70 мм.

Рис. 40. Водяной насос и вентилятор двигателя ЗИЛ-130:
а - принципиальная схема; б - конструкция насоса и вентилятора

На новых моделях автомобилей КамАЗ ГАЗ и других в целях ускорения прогрева двигателя зимой устанавливают вентиляторы с механизмами для их отключения.

Вентиляторы выполняются совместно с водяным насосом (ЗИЛ-130, ГАЗ-53А, МТЗ-80, ДТ-75М и др.) или отдельно от него (ЯМЗ-236, ЯМЗ-238 и др.).

Насос и вентилятор приводятся в действие клиноременной передачей от шкива коленчатого вала. Шестеренный привод вентилятора применяется в дизельных двигателях ЯМЭ-236 и ЯМЗ-238. Натяжение ремня регулируется посредством изменения положения шкива генератора (ЗИЛ-130, ДТ-75М, МТЗ-80 и др.), винтовым натяжным устройством (Д-130, Д-108 и др.) или натяжным роликом (ГАЗ-53А и др.).

Рис. 41. Гидромуфта привода вентилятора двигателя ЯМЗ-740

Для поддержания наивыгоднейшего теплового режима двигателя ЯМЗ-740 привод вентилятора осуществляется посредством гидромуфты, которая включается и выключается автоматически в зависимости от температуры жидкости в системе охлаждения. При такой конструкции вентилятор установлен на ведомом валу гидромуфты, которая крепится в передней части блока двигателя и приводится во вращение коленчатым валом двигателя с помощью валика привода гидромуфты.

Гидромуфта состоит из ведущих и ведомых частей, расположенных в полости, образуемой передней крышкой и корпусом (рис. 41).

Ведущая часть гидромуфты, вращающаяся на шариковых подшипниках, состоит из ведущего колеса в сборе с кожухом, ведущего вала и ступицы со шкивом.

Ведомая часть гидромуфты, вращающаяся на шариковых подшипниках, состоит из ведомого колеса, соединенного с ведомым валом, на котором закреплена ступица вентилятора.

Внутренние поверхности ведущего и ведомого колес имеют лопатки. Полость гидромуфты уплотнена резиновыми манжетами.

При работающем двигателе масло, поступающее из системы смазки, попадает на лопатки вращающегося ведущего колеса. Частицы масла, увлекаемые лопатками ведущего колеса, ударяясь вi лопатки ведомого колеса, обеспечивают вращение ведомых деталей и вентилятора. Частота вращения ведомого колеса с вентилятором зависит от количества масла, поступающего в полость гидромуфты.

Корректирование режима работы вентилятора в зависимости от температуры жидкости в системе охлаждения осуществляет выключатель гидромуфты. Он обеспечивает соединение или разъединение ведущего вала с ведомым путем регулирования расхода масла через гидромуфту, а вместе с тем и включение или выключение вентилятора, установленного на ведомом валу гидромуфты.

Выключатель гидромуфты золотникового типа расположен на патрубке, подводящем охлаждающую жидкость к правому боку цилиндров. Он имеет термосиловой элемент, заполненный активной массой, плавящейся с увеличением температуры охлаждающей жидкости. Когда температура жидкости повысится до 80-95 °С, объем активной массы настолько увеличится, что находящийся под ее действием шток переместит золотник выключателя и откроет проход для масла от насоса двигателя в полость гидромуфты. Заполнение полости гидромуфты маслом обеспечивает передачу вращения от ведущего колеса к ведомому Ведомое колесо муфты увеличивает частоту своего вращения, а вместе с этим возрастает и частота вращения вентилятора. Это возрастание происходит очень плавно, и вентилятор равномерно увеличивает скорость воздуха, проходящего через радиатор. С уменьшением подачи масла в полость гидромуфты его объем становится недостаточным для передачи вращения ведущим и ведомым колесам гидромуфты, поскольку из ее полости маслу открыт проход для стекания в поддон картера двигателя. При полном прекращении подачи масла в полость гидромуфты она перестает передавать вращение вентилятору.

Термостат служит для автоматического регулирования температуры жидкости в системе охлаждения путем изменения интенсивности ее циркуляции через радиатор и ускорения прогрева двигателя после пуска.

Термостаты бывают одно- и двухкла—панные жидкостные и с твердым наполнителем. На автотракторных двигателях ранее применялись жидкостные термостаты, а в настоящее время устанавливают термостаты с твердым наполнителем.

Жидкостный термостат (рис. 42, а) состоит из гофрированого цилиндра, заполненного легкокипящей (при 75- 85 °С) жидкостью, корпуса с окнами, основного и перепускного клапанов.

При температуре охлаждающей жидкости ниже 70 °С цилиндр сжат и основной клапан закрыт. Охлаждающая жидкость по перепускному каналу поступает обратно к водяному насосу через два окна, минуя радиатор, благодаря чему достигается быстрый прогрев двигателя.

При повышении температуры жидкости свыше 70 °С в гофрированном цилиндре начинается ее испарение и давление в нем повышается. Под действием возросшего давления основной клапан поднимается, открывая доступ охлаждающей жидкости из рубашки охлаждения в радиатор по патрубку. Одновременно с подъемом основного клапана поднимается и перепускной клапан, постепенно перекрывающий окно и прекращающий доступ охлаждающей жидкости в перепускной канал. При температуре охлаждающей жидкости 81-85 °С прекращается циркуляция через перепускной канал и жидкость в радиатор поступает только через патрубок.

Термостат с твердым наполнителем состоит из медного баллона (рис. 42, б), наполненного активной массой, состоящей из церезина (нефтяной воск), перемешанного с медным порошком. Баллон закрыт крышкой с резиновой мембраной. На мембрану опирается шток, который соединен шарнирно с заслонкой, установленной на шарнирной опоре в горловине водяного патрубка. При непрогретом двигателе заслонка постоянно прижата к краям горловины пружиной и охлаждающая жидкость циркулирует, минуя радиатор, ускоряя прогрев двигателя. При достижении охлаждающей жидкостью температуры 70-85 °С церезин в баллоне термостата плавится и, увеличивая свой объем, перемещает шток с резиновым буфером вверх, открывая заслонку 15. Охлаждающая жидкость циркулирует через радиатор.

При снижении температуры активная масса уменьшает свой объем и заслонка под действием пружины прикрывается. Схема циркуляции охлаждающей жидкости при разных положениях клапана термостата показана на рис. 43.

Слив жидкости из системы охлаждения производится при снятой пробке радиатора через сливные краники на радиаторе и на блоке. У V-образных двигателей имеются два краника (см. рис. 35) на блоке и третий на патрубке радиатора. Пусковой подогреватель также оборудуется сливным краником.

Рис. 42. Термостаты:
а - жидкостного типа: б - с твердым наполнителем

Рис. 43. Схема циркуляции охлаждающей жидкости в системе охлаждения:
а - при закрытом клапане термостата (малый круг циркуляции); б – при открытом клапане (большой круг циркуляции)

Элементы жидкостной системы охлаждения соединяются при помощи стальных труб, чугунных патрубков и прорезиненных гибких шлангов с хомутиками. Такое соединение допускает относительное смещение двигателя и радиатора.

Конденсационный (расширительный) бачок компенсирует изменение объема жидкости при ее нагревании, способствует удалению из охлаждающей жидкости воздуха и конденсации пара, поступающего в него из системы охлаждения.

Расширительный бачок (рис. 44) соединяется перепускной трубкой с верхним бачком радиатора. На верхнем бачке радиатора устанавливается бесклапанная пробка, а на конденсационном бачке - пробка с клапанами, конструкция которых приведена на рис. 38. Бачок имеет сливной кран и пароотводную трубку. При кипении охлаждающей жидкости пар по трубке поступает в расширительный бачок и конденсируется при перемешивании с жидкостью, находящейся в бачке. С понижением температуры в бачке создается разрежение. При этом открывается впускной клапан пробки и воздух поступает внутрь бачка, а охлаждающая жидкость из расширительного бачка пополняет систему. Благодаря наличию бачка в радиаторе поддерживается необходимый уровень жидкости.

Контроль за температурой в системе охлаждения осуществляют по показаниям электрических указателей температуры воды, а также аварийными сигнализаторами.

Рис. 44. Расширительный бачок

На рисунке показана жидкостная система охлаждения карбюраторного V-образного двигателя. Каждый ряд блока имеет обособленную водяную рубашку. Нагнетаемая вода водяным насосом 5 разделяется на два потока - в распределительные каналы и далее в водяную рубашку своего ряда блока, а из них - в рубашки головок цилиндров.

Рис. Система охлаждения двигателя ЗМЗ-53: а - устройство; б - сердцевина; в - жалюзи; 1 - радиатор; 2 - датчик сигнализатора перегрева жидкости; 3 - пробка радиатора; 4 - кожух; 5 - водяной насос; 6 - перепускной шланг; 7 и 12 - соответственно отводящий и подводящий шланги; 8 - термостат; 9 - датчик температуры жидкости; 10 - штуцер сливного краника; 11 - рубашка охлаждения; 13 - ремень вентилятора; 14 - сливной краник; 15 - вентилятор; 16 - жалюзи; 17 - вентилятор отопителя; 18 - отопитель кабины; 19 - пластина жалюзи; 20 - тросик

При работе системы охлаждения значительное количество жидкости подается к наиболее нагретым местам - патрубкам выпускных клапанов и гнездам искровых свечей зажигания. У карбюраторных двигателей вода из рубашек головок цилиндров предварительно проходит через водяную рубашку впускной трубы, омывает стенки и нагревает смесь, поступающую из карбюратора по внутренним каналам трубы. При этом улучшается испарение бензина.

Радиатор служит для охлаждения воды, поступающей из водяной рубашки двигателя. Радиатор состоит из верхнего и нижнего баков, сердцевины и деталей крепления. Баки и сердцевина для лучшей проводимости теплоты изготовлены из латуни.

В сердцевине размещен ряд тонких пластин, сквозь которые проходит множество вертикальных трубок, припаянных к ним. Вода, поступающая через сердцевину радиатора, разветвляется на большое число мелких струек. При таком строении сердцевины вода охлаждается интенсивнее благодаря увеличению площади соприкосновения воды со стенками трубок.

Верхний и нижний баки шлангами 7 и 12 соединены с рубашкой охлаждения двигателя. В нижем баке предусмотрен краник 14 для слива воды из радиатора. Для ее спуска из водяной рубашки в нижней части блока цилиндров также имеются краники (с обеих сторон).

В систему охлаждения воду заливают через горловину верхнего бака, закрываемую пробкой 3.

К отопителю кабины 18 горячая вода поступает от водяной рубашки головки блока и отводится трубой к водяному насосу. Количество воды, поступающей к отопителю (или температура в кабине водителя), регулируется краном.

В системе жидкостного охлаждения предусмотрено двойное регулирование теплового режима двигателя - с помощью жалюзи 16 и термостата 8. Жалюзи состоят из набора пластин 19, которые шарнирно закреплены в планке. В свою очередь, планка тягой и системой рычагов связана с рукояткой управления жалюзи. Рукоятка размещена в кабине. Створки могут располагаться вертикально или горизонтально.

Водяной насос и вентилятор объединены в одном корпусе, который через уплотнительную прокладку прикреплен к площадке на передней стенке блок-картера. В корпусе 7 насоса на шариковых подшипниках установлен валик 4. На его переднем конце с помощью ступицы закреплен шкив 2. К его торцу привернута крестовина, к которой приклепана крыльчатка 1 вентилятора. При работе двигателя шкив получает вращение от коленчатого вала через ремень. Лопасти крыльчатки 1, расположенные под углом к плоскости вращения, забирают воздух от радиатора, создавая разрежение внутри кожуха вентилятора. Благодаря этому холодный воздух проходит через сердцевину радиатора, отнимая у него теплоту.

На заднем конце валика 4 жестко посажена крыльчатка 5 центробежного водяного насоса, который представляет собой диск с равномерно расположенными на нем криволинейными лопатками. При вращении крыльчатки жидкость из подводящего патрубка 8 поступает к ее центру, захватывается лопастями и под действием центробежной силы отбрасывается к стенкам корпуса 7 и через прилив подается в водяную рубашку двигателя.

Рис. Водяной насос и вентилятор двигателя ЗИЛ-508: 1 - крыльчатка вентилятора; 2 - шкив; 3 - подшипник; 4 - валик; 5 - крыльчатка насоса; 6 - прокладка; 7 - корпус насоса; 8 - подводящий патрубок; 9 - корпус подшипников; 10 - манжета; 11 - уплотняющая шайба; 12 - обойма сальникового уплотнения

На заднем конце валика 4 также предусмотрено сальниковое уплотнение, которое не пропускает воду из водяной рубашки двигателя. Уплотнение смонтировано в цилиндрической ступице крыльчатки и застопорено в ней пружинным кольцом. Оно состоит из текстолитовой уплотняющей шайбы 11, резиновой манжеты 10 и пружины, которая прижимает шайбу к торцу корпуса подшипников. Своими выступами шайба входит в пазы крыльчатки 5 и закрепляется обоймой 12.

На двигателе автомобиля КамАЗ вентилятор расположен отдельно от водяного насоса и приводится в действие через гидравлическую муфту. Гидромуфта (рис. а) включает в себя герметический кожух В, заполненный жидкостью. В кожухе помещены два (с поперечными лопастями) сферических сосуда Д и Г, жестко соединенные с ведущим А и ведомым Б валами соответственно.

Принцип работы гидромуфты основан на действии центробежной силы жидкости. Если быстро вращать сферический сосуд Д (насосный), заполненный рабочей жидкостью, то под действием центробежной силы жидкость скользит по криволинейной поверхности этого сосуда и попадает во второй сосуд Г (турбинный), заставляя его вращаться. Потеряв энергию при ударе, жидкость снова попадает в первый сосуд, разгоняется в нем, и процесс повторяется. Таким образом, передается вращение с ведущего вала А, соединенного с одним сосудом Д, на ведомый вал Б, соединенный жестко с другим сосудом Г. Этот принцип гидродинамической передачи используется в технике при конструировании различных механизмов.

Рис. Гидромуфта: а - принцип действия; б - устройство; 1 — крышка блока цилиндров; 2 - корпус; 3 - кожух; 4 - валик привода: 5 - шкив; 6 - ступииа вентилятора; А - ведуши вал; Б — ведомый вал; В - кожух; Г, Д - сосуды; Т - турбинное колесо; Н - насосное колесо

Гидромуфта размещена в полости, образованной передней крышкой 1 блока цилиндров и корпусом 2, соединенных винтами. Гидромуфта состоит из кожуха 3, насосного Н и турбинного Г колес, ведущего А и ведомого Б валов. Кожух соединен через ведущий вал А с коленчатым валом с помощью валика привода 4. С другой стороны кожух 3 соединен с насосным колесом и шкивом 5 привода генератора и водяного насоса. Ведомый вал Б опирается на два шариковых подшипника и соединен одним концом с турбинным колесом, а другим - со ступицей 6 вентилятора.

Вентилятор двигателя расположен соосно с коленчатым валом, передний конец которого соединен шлицевым валом с ведущим валиком 4 привода гидромуфты. Поворотом рычага включателя гидромуфты можно задать один из требуемых режимов работы вентилятора: «П» - вентилятор включен постоянно, «А» - вентилятор включается автоматически, «О» - вентилятор отключен (рабочая жидкость выпущена из кожуха). На режиме «П» допустима только кратковременная работа.

Автоматическое включение вентилятора происходит при повышении температуры охлаждающей жидкости, омывающей термосиловой датчик. При температуре охлаждающей жидкости 85 °С клапан датчика открывает масляный канал в корпусе включателя и рабочая жидкость - моторное масло - поступает в рабочую полость гидромуфты из главной магистрали смазочной системы двигателя.

Термостат служит для ускорения прогрева холодного двигателя и автоматического регулирования его теплового режима в заданных пределах. Он представляет собой клапан, регулирующий количество циркулирующей жидкости через радиатор.

На изучаемых двигателях применяют одноклапанные термостаты с твердым наполнителем - церезином (нефтяным воском). Термостат состоит из корпуса 2, внутри которого помещен медный баллон 9, заполненный активной массой 8, состоящей из медного порошка, смешанного с церезином. Масса в баллоне плотно закрыта резиновой мембраной 7, на которой установлена направляющая втулка 6 с отверстием для резинового буфера 12. На последнем установлен шток 5, связанный рычагом 4 с клапаном. В исходном положении (на холодном двигателе) клапан плотно прижат к седлу (рис. б) корпуса 2 спиральной пружиной 1. Термостат установлен между патрубками 10 и 11, отводящими нагретую жидкость в верхний бак радиатора и водяной насос.

Рис. Термостат с поворотным (а-в) и простым (г) клапанами: а - устройство термостата с поворотным клапаном (карбюраторный двигатель ЗИЛ-508); б - клапан закрыт; в - клапан открыт; г - устройство термостата с простым клапаном (карбюраторный двигатель 3M3-53); 1 - спиральная пружина; 2 - корпус; 3 - клапан (заслонка); 4 - рычаг; 5 - шток; 6 - направляющая втулка; 7 - мембрана; 8 - активная масса; 9 - баллон; 10 и 11 - патрубки отвода жидкости в радиатор и водяной насос; 12 - резиновый буфер; 13 - клапан; 14 - пружина; 15 - седло корпуса; А - ход клапана

При температуре охлаждающей жидкости выше 75 °С активная масса Оплавится и расширяется, воздействуя через мембрану, буфер и шток 5 на рычаг 4, который, преодолевая силу пружины 1, начинает открывать клапан 3 (рис. в). Полностью клапан откроется при температуре охлаждающей жидкости 90 °С. В интервале температур 75…90 °С клапан термостата, изменяя свое положение, регулирует количество охлаждающей жидкости, проходящей через радиатор, и тем самым поддерживает нормальный температурный режим двигателя.

На рисунке г показан термостат с простым клапаном 13 в положении, когда он открыт полностью для прохода жидкости в радиатор, т.е. когда его ход равен расстоянию А. При температуре 90 °С, когда активная масса баллона расплавлена, клапан вместе с баллоном садится вниз, преодолевая сопротивление пружины 14. По мере остывания масса в баллоне сжимается и пружина поднимает клапан вверх. При температуре 75 °С клапан 13 прижимается к седлу 15 корпуса, закрывая выход жидкости в радиатор.

Рис. Паровоздушный клапан: а — открыт паровой клапан; б - открыт воздушный клапан; 1 и 6 - соответственно паровой и воздушный клапаны; 2 и 5 - пружины парового и воздушного клапанов; 3 - пароотводная трубка; 4 - пробка (крышка) наливной горловины радиатора

Паровоздушный клапан необходим для сообщения внутренней полости радиатора с атмосферой. Он смонтирован в пробке 4 наливной горловины радиатора. Клапан состоит из парового клапана 1 и размещенного внутри него воздушного клапана 6. Паровой клапан под действием пружины 2 плотно закрывает горловину радиатора. Если температура воды в радиаторе повышается до предельного значения (для данного двигателя), то под давлением пара паровой клапан открывается и его избыток выходит наружу.

Когда при охлаждении воды и конденсации пара в радиаторе создается разрежение, открывается воздушный клапан и в радиатор поступает атмосферный воздух. Воздушный клапан закрывается под действием пружины 5, когда давление воздуха внутри радиатора уравновешивается с атмосферным. Посредством воздушного клапана вода сливается из системы охлаждения при закрытой крышке горловины. При этом трубки радиатора предохраняются от разрушения под влиянием атмосферного давления в процессе остывания двигателя.

Для контроля за температурой охлаждающей жидкости служат сигнальная лампа и дистанционный термометр. Лампа и указатель термометра помещены на щитке приборов, а их датчики могут быть в головке цилиндров, в водоотводящей трубе, впускном трубопроводе или в верхнем баке радиатора.

Большая часть серьёзных неисправностей автомобиля связана с перегревом двигателя. Температура газов в цилиндре достигает 2000 гр. При сгорании топлива в цилиндре образуется большое количество тепла, которое необходимо отвести и тем самым не допустить перегрева деталей двигателя.

Принципы построения систем охлаждения

Снижение эффективности работы системы охлаждения приводит к увеличению температуры поршней, уменьшению зазоров между поршнем и цилиндром. Тепловые зазоры уменьшаются до нуля. Поршень задевает за стенки цилиндра, образуются задиры, перегретое масло теряет смазочные свойства и масляная плёнка разрывается. Такой режим работы может привести к заклиниванию двигателя. Перегрев сопровождается неравномерным расширением головки блока, болтов крепления, блока двигателя и пр. В дальнейшем разрушение двигателя неизбежно: трещины в головке блока, деформация плоскостей стыка головки и самого блока цилиндров, образуются трещины сёдел клапанов и т.п. — неприятно даже перечислял, всё это, поэтому лучше до этого не доводить!

Система охлаждения двигателя и масла призвана не допустить подобного развития событий, но для того, чтобы система справилась с поставленными задачами, необходимо использовать качественную охлаждающую жидкость (ОЖ). Низкозамерзающие ОЖ называют антифризами — от английского слова «antifreeze». Ранее ОЖ приготовляли на основе водных растворов одноатомных спиртов, гликолей, глицерина и неорганических солей. В настоящее время предпочтение отдано моноэтиленгликолю — бесцветной сиропообразной жидкости с плотностью примерно 1,112 г\см2 и температурой кипения 198 гр. Задача ОЖ не только охлаждать двигатель, но и не кипеть во всём диапазоне температур работы двигателя и его компонентов, иметь высокую теплоёмкость и теплопроводность, не пениться, не оказывать вредного воздействия на патрубки и уплотнения, обладать смазывающими и антикоррозийными свойствами.

В 70 х годах выпускался антифриз на основе водного раствора моноэтиленгликоля с температурой начала кристаллизации — 40 гр. Он не требовал разбавление водой при добавлении в систему охлаждения. Этот препарат получил название ТОСОЛ — по названию лаборатории «Технология Органического Синтеза». Т.к. название не запатентовано, то ТОСОЛом называют готовый к применению продукт, а «антифризом» — концентрированный раствор (хотя ТОСОЛ тоже антифриз).

Готовые антифризы окрашивают для безопасности и выбирают броские цвета: синий, зелёный, красный. В процессе эксплуатации антифриз теряет полезные свойства — снижаются антикоррозийные свойства, возрастает склонность к пенообразованию. Срок службы отечественных ОЖ от 2 до 5 лет, импортных 5-7 лет.

На рисунке, приведённом ниже, изображена схема системы охлаждения автомобиля. Ничего особенного или сложного в системе охлаждения нет и тем не менее…

Рис. 1 — двигатель, 2 — радиатор, 3 — отопитель, 4 — термостат, 5 — расширительный бачок, 6 — пробка радиатора, 7 — верхний патрубок, 8 — нижний патрубок, 9 — вентилятор радиатора, 10 — датчик включения вентилятора, 11 — датчик температуры, 12 — помпа.

При пуске двигателя начинает вращаться помпа (водяной насос). Привод помпы может иметь свой шкивок, приводимый во вращение ремнем вспомогательного оборудования или приводиться вращением ремня ГРМ. В системе охлаждения находится крыльчатка, которая вращаясь, приводит в движение охлаждающую жидкость. Для быстрого прогрева двигателя система «закорочена», т.е. термостат закрыт и не пропускает жидкость в радиатор охлаждения. По мере роста температуры охлаждающей жидкости открывается термостат, переводя систему в другое состояние, когда охлаждающая жидкость проходит по длинному пути — через радиатор системы охлаждения (короткий путь перекрыт термостатом). Термостаты имеют различные характеристики открытия. Обычно на кромке нанесена температура открытия. Наверное не стоит объяснять устройство радиатора. В нижней части радиатора установлен датчик включения вентилятора. Если температура охлаждающей жидкости достигнет определённой величины — датчик замкнётся, а т.к. электрически он соединён на разрыв цепи питания электровентилятора, то при замыкании — должен включиться вентилятор системы охлаждения. По мере остывания охлаждающей жидкости — вентилятор выключается, а термостат перекрывает длинный путь на короткий. Всё просто, но не очень…

Такая схема является основой, но жизнь не стоит на месте и различные производители усовершенствуют системы охлаждения. На некоторых автомобилях Вы не найдёте датчика включения вентилятора системы охлаждения, т.к. вентилятор включается от ЭБУ двигателем в зависимости от показаний датчика температуры охлаждающей жидкости. Стоит обратить внимание на ситуацию, при которой при вклинении зажигания — сразу включается вентилятор системы охлаждения. Или неисправен датчик температуры, или повреждены его цепи, или неисправен сам ЭБУ двигателем — он «не видит» температуру двигателя и на всякий случай включает сразу вентилятор.

На некоторых а\м на пути к отопителю установлены специальные электроклапана, разрешающие или перекрывающие путь охлаждающей жидкости (БМВ, МЕРСЕДЕС). Такие клапана иногда «помогают» системе охлаждения выйти из строя.

Поиск и устранение неисправностей в системе охлаждения

Специалистами фирмы «АБ-Инжиниринг» под руководством Хрулева А.Э. разработала таблица причин и последствий перегрева двигателя. Сам перегрев двигателя — это температурный режим его работы, характеризуемый закипанием охлаждающей жидкости. Но не только перегрев является неисправностью. Работа двигателя при постоянно пониженной температуре тоже считаем неисправностью, т.к. при этом двигатель работает при несвойственном ему температурном режиме. Выход из строя термостата, электровентилятора или вязкостной муфты, термовыключателей и пр. приведет к нештатной работе системы охлаждения. Если водитель вовремя обнаружит признаки нарушения теплового режима работы двигателя и не допустит необратимых процессов, то ремонт системы охлаждения не будет дорогим и долгим. Поэтому настоятельно рекомендуем обратить Ваше (и Ваших клиентов) внимание на температурные режимы двигателя.

А. Первым делом необходимо проверить схему соединения патрубков системы охлаждения, если автомобиль не новый или поступил в ремонт после ремонта на другом сервисе.

Кому-то такое предложение покажется смешным, но жизнь показала обратное, примеры:

  • собранный после капремонта автомобиль имел соединение патрубка системы вентиляции картера с расширительным бачком системы охлаждения;
  • установленный нештатный вентилятор с лопастями, направляющими воздушный поток не в ту сторону;
  • лопасти электровентилятора свободно вращаются на валу выключенного двигателя;
  • разъёмы электровентилятора разболтаны или оборваны и т.п.

Осмотреть радиатор на предмет внешнего засорения. Осмотреть зоны и пути естественного охлаждения двигателя. Отрицательным примером может служить мощная защита нижней части двигателя, которая преграждает путь воздушному потоку, охлаждающему двигатель снизу. Иногда поломка бампера, нижняя часть которого имеет направляющие воздушного потока на двигатель, приводит к перегреву (VW «Пассат» Б3).

Б. После осмотра необходимо проверить уровень охлаждающей жидкости в системе, наличие и исправность клапанов крышек радиатора и расширительного бачка, целостность патрубков и шлангов. Уточнить, какой антифриз или просто вода залиты в систему, т.к. температура кипения у каждой жидкости своя.

Если первые два пункта (А или Б) выявили какие-то неисправности, их необходимо устранить или принять к сведению при вынесении «приговора». При добавлении охлаждающей жидкости необходимо помнить, что не все автомобили спроектированы по принципу «просто добавь воды». К примеру на автомобиле БМВ (М20, Е34) при добавлении охлаждающей жидкости необходимо включить зажигание и установить регуляторы температуры печки в режим «максимально тепло», чтобы включились клапана печки и открылись для движения охлаждающей жидкости по системе, к тому же необходимо поднять радиатор вверх, т.к. расширительный бачок, встроенный в радиатор «чудо-проектировщиками» Германии, расположен ниже уровня печки салона и она часто завоздушивается.

Если есть подозрение на то, что двигатель завоздушен (в системе находится воздух, который препятствует движению жидкости), необходимо выкрутить специальные заглушки системы охлаждения для выпуска воздуха. Расположены они обычно в верхней части системы охлаждения двигателя. Запустить двигатель, включить отопители салона, включит вентилятор. Наблюдать за прогревом двигателя, узлов и агрегатов. Если в системе есть расширительный бачок, то проверить циркуляцию жидкости, т.е. её движение по системе. При добавлении оборотов двигателя до 2 500 — 3 000 в бачок должна поступать мощная струя охлаждающей жидкости. Из выкрученных (не полностью!) заглушек может некоторое время выходить воздух и как только польётся жидкость — заглушки необходимо закрутить. По мере прогрева двигателя из отопителя салона должен идти прогревающийся воздух. Если двигатель прогревается, а воздух из отопителя холодный, то это является первым признаком «завоздушивания» системы охлаждения. Необходимо заглушить двигатель и принять меры по поиску и устранению этой неисправности.

При исправном термостате (температура открытия может быть разной от 80 до 95 градусов) после прогрева нижний патрубок радиатора должен иметь примерно такую же температуру, как и верхний. Если это не так, значит плохая прокачка охлаждающей жидкости через радиатор.

При исправном термостате через некоторое время после его открытия должен включиться вентилятор системы охлаждения. Если в системе установлен не электровентилятор, то необходимо проверить датчик включения цепи электромагнитной муфты или работу вязкостной муфты. При неисправности вязкостной муфты вентилятор системы охлаждения на разогретом двигателе можно остановить и удерживать рукой (при остановке соблюдать осторожность — останавливать мягким предметом, чтобы не повредить крыльчатку вентилятора или руку). Необходимо проверить напор воздуха и его температуру — горячий воздух должен быть направлен на двигатель.

Давление в системе охлаждения должно медленно возрастать по мере прогрева двигателя и медленно опускаться после выключения двигателя. Если верхний патрубок, идущий к радиатору раздувается при повышении оборотов двигателя, необходимо проверить, не попадают ли в систему охлаждения часть отработанных газов. Обычно это заметно по масляной плёнке в расширительном бачке или пузырению охлаждающей жидкости. При этом из глушителя обычно интенсивно идёт белый дым от разогретой и испаряющейся охлаждающей жидкости, попадающей в цилиндры двигателя. В таком случае необходимо проверить маслозаливную горловину двигателя и сели на ней белая эмульсия, то охлаждающая жидкость не только в цилиндрах двигателя, но и в системе смазки (необходимо прекратить движение). Приведём несколько примеров из практики различных сервисов, которые «говорят» о том, что диагностика Двигателя неотделима от диагностики всех систем автомобиля, в том числе и системы охлаждения.

А\м МАЗДА 626 — хозяин жалуется на неравномерность оборотов двигателя или повышенные обороты холостого хода. Проверка системы управления (и самодиагностика) не выявили неисправности. Обратили внимание на повышенное напряжение на температурном датчике охлаждающей жидкости.

Система управления добавляет количество топлива, т.к. реагирует на высокое напряжение на датчике (двигатель холодный). Оказалось, что в системе охлаждения мало жидкости, датчик «оголён». Просто добавлен до нормального уровень охлаждающей жидкости и обороты нормализуются.

А\м ФОРД — охлаждающая жидкость попадала в масло нетрадиционным путём — через систему охлаждения масла, расположенную вокруг масляного фильтра.

А\м ФОРД — после прогрева двигателя переставал работать один цилиндр. Замена свечи и другие работы приводили к положительному результату (к определению неисправности это не имело отношения, просто за время проведения работ двигатель остывал) — цилиндр начинал работать и клиент уезжал. На следующий день он снова у нас. Оказалось — трещина в головке блока в районе выпускного клапана неработающего цилиндра. Пока двигатель холодный — всё в норме. При прогреве — трещина увеличивалась и начинала пропускать охлаждающую жидкость в цилиндр. Смесь обеднялась и начинались перебои в работе, а затем полностью отключался цилиндр.

Таких примеров можно приводить много, они есть в практике каждого авторемонтника. Главный вывод должен сделать себе каждый, кто серьёзно занят авторемонтом — замечать и анализировать всё значительное и незначительное, т.к. эти позиции могут резко поменяться местами.

Современный автолюбитель, все больше интересуется устройством автомобиля. В изучении автомобильного устройства, сложно обойти стороной такую важную часть, как поддержание температурного режима в движке авто. СО (Система охлаждающая движок), важнейшая составляющая любой машины. От правильности ее функционирования, зависим износ и продуктивность движка машины. Исправная СО, существенно снижает нагрузку на рабочие элементы двигателя. Для поддержания корректного функционирования системы, необходимо хорошо понимать ее составляющие. Изучив полезные материалы, вы сможете обслуживать СО со знанием дела.

В ходе эксплуатации автомобиля, рабочие части движка способны набирать высокую температуру. Во избежание перегрева рабочих частей, авто оснащается системой охлаждения. Система охлаждения автомобиля, существенно снижает температуру рабочих частей двигателя. Поддержание оптимального температурного режима, происходит благодаря рабочей жидкости. Рабочая смесь, циркулирует по специальным проводникам, предотвращая перегрев. Система, на всех автомобилях, выполняет ряд дополнительных функций.

Функции охладительной системы.

  • Оптимизация температуры смеси для смазывания рабочих частей авто.
  • Регулирование температуры отработанных газов, в выхлопной системе.
  • Понижение температуры смеси для работы АКПП.
  • Понижение температуры воздуха в турбине автомобиля.
  • Нагревание потока воздуха в системе отопления.

На сегодняшний день, существует несколько видов систем охлаждения. Системы, разделяют в частности от способа понижения температуры рабочих частей.

Виды охлаждающих систем.

  • Закрытая. В данной системе, понижение температуры происходит благодаря рабочей жидкости.
  • Открытая (Воздушная). В открытой системе, понижение температуры осуществляется при помощи воздушного потока.
  • Комбинированная. Рассматриваемая система охлаждения, совместила в себе два вида охлаждения. В частности от производителя системы, охлаждение производится совместно или последовательно.

Наиболее популярной в машиностроении, стала система охлаждения двигателя использующая ОЖ. Рассматриваемая система охлаждения, стала наиболее действенной и практичной к эксплуатации. Система охлаждения, равномерно осуществляет понижение температуры рабочих частей двигателя. Рассмотрим устройство и способ функционирования системы, используя наиболее популярный пример.

Вне зависимости от особенностей двигателя, конструкция и функционирование охладительной системы, отличаются не сильно. Таким образом, двигатели с различным видом топлива, обладают практически идентичной системой поддержания температурного режима. Система охлаждения, включает в себя составные части, обеспечивающие ее функционирование. Каждая составляющая, является крайне важна для полноценной работы. При нарушении работы одной составляющей, нарушается корректная оптимизация температурного режима.

Составные элементы систем охлаждения.

  • Теплообменник ОЖ.
  • Масляный теплообменник.
  • Вентилятор.
  • Насосы. В частности от модели ОС, их может быть несколько.
  • Бак для рабочей смеси.
  • Датчики.

Для функционирования рабочей смеси, в системе существуют специальные проводники. Контроль работы системы, осуществляется благодаря центральной системы управления.

Теплообменник, осуществляет понижение температуры жидкости, потоком холодного воздуха. Для изменения тепловой отдачи, теплообменник оснащается определенным механизмом, представляющим небольшую трубку.

Вместе с штатным передатчиком, некоторые производители, оснащают систему теплообменником масла и переработанных газов. Теплообменник масла, осуществляет понижение температуры жидкости, смазывающей рабочие составляющие. Второй, необходим для понижения температуры выхлопной смеси. Регулятор циркуляции выхлопа — снижает температуру выработки совокупности топлива и воздуха. Тем самым, снижается количество получаемого азота, в процессе функционирования двигателя. За правильную работу рассматриваемого устройства, отвечает специальный компрессор. Компрессор, приводит в движение рабочую смесь, перемещая ее по системе. Устройство, является встроенным в ОС.

Теплообменник, отвечает за противоположное действие. Устройство производит увеличение температуры, функционирующего по системе, потока воздуха. Для обеспечения максимальной продуктивности, механизм находиться на выходной части ОЖ из двигателя автомобиля.

Расширительный бочок, предназначен для заполнения системы рабочей смесью. Благодаря данному, в проводники поступает свежая ОЖ, восстанавливающая объем отработанной. Тем самым, уровень смеси, всегда остается необходимым.

Движение ОЖ, происходит благодаря центральному насосу. В зависимости от производителя, насос приводиться в действие различными методами. Большинство насосов, имеют привод в виде ремня или шестеренки. Некоторые производители, оснащают ОС еще одним насосом. Дополнительный насос, необходим при оснащении механизма компрессором, для охлаждения воздушного потока. Блок управления двигателя, отвечает за функционирование всех насосов системы.

Для создания оптимальной температуры жидкости, предусмотрен термостат. Данное устройство выявляет объем жидкости (движущейся через радиатор), который необходимо охладить. Тем самым, создаются необходимый температурный режим, для корректной работы двигателя. Устройство находиться между радиатором и проводника смеси.

Двигатели с большим объемом, оснащаются электрическими термостатами. Данный вид устройств, осуществляют изменение температуры жидкости в несколько этапов. Устройство имеет несколько режимов работы: свободный, замкнутый и промежуточный. Когда, нагрузка на двигатель становиться предельной, благодаря электрическому приводу, термостат приводиться в свободный режим. В данном случае, температура снижается до необходимого уровня. В частности от давления на двигатель, термостат работает в режиме поддержания оптимальной температуры.

Вентилятор, отвечает за улучшение продуктивности регулирования температуры жидкости. В зависимости от модели ОС и производителя, привод вентилятора различается.

Виды привода вентилятора:

  • Механика. Данный вид привода, устанавливает непрерывный контакт с кален — валом движка.
  • Электрика. В таком случае, вентилятор приводиться в действие благодаря электрическому движку.
  • Гидравлика. Специальная муфта с гидравлическим приводом, непосредственно активирует вентилятор.

Благодаря возможности регулировки и множеству режимов работы, наиболее популярным стал — электрический привод.

Важными составляющими совокупности являются датчики. Датчик уровня и температуры охладительной жидкости, позволяют следить за необходимыми параметрами и своевременно их восстанавливать. Так же, в устройстве располагаются центральный блок управления и элементы регулировки.

Датчик температуры ОЖ, определяет показатель рабочей жидкости и переводит его в цифровой формат, для передачи устройству. На выходе радиатора, устанавливается отдельный датчик, для расширения функциональности охладительной системы.

Электрический блок, принимает показатели от датчика и передает его специальным устройствам. Блок, так же изменяет показатели для воздействия, определяя необходимое направление. Для этого, в блоке существует специальная программная установка.

Для осуществления действий и регулировки температуры охлаждающей жидкости, механизм оснащается рядом специальных устройств.

Исполнительные системы ОС.

  • Регулировщик температуры термостата.
  • Переключатель основного и вторичного компрессора.
  • Блок управления режимов вентилятора.
  • Блок, регулирующий работу ОС, после остановки движка.

Принципы функционирования охлаждающей системы.

Контроль за работой охладительной совокупности, осуществляет центральный блок управления двигателя. Большинство автомобилей оборудованы системой, в основе которой лежит определенный алгоритм. Необходимые условия работы и период определенных процессов, определяются с использованием соответствующих показателей. Оптимизация происходит, исходя из показателей датчиков (температура и уровень ОЖ, температура смазывающей жидкости). Тем самым, задаются оптимальные процессы для поддержания температурного режима в движке автомобиля.

Центральный насос, отвечает за постоянное движение охлаждающей жидкости по проводникам. Под давление, жидкость непрерывно движется по проводникам ОС. Благодаря данному процессу, происходит понижение температуры рабочих частей двигателя. В зависимости от особенностей определенного механизма, различают несколько направлений движения смеси. В первом случае, смесь направляется из начального цилиндра в конечный. Во втором, от коллектора выхода до входного.

Исход из показателей температуры, жидкость поступает по узкой или широкой дуге. При запуске двигателя, рабочие элементы и жидкость, в том числе, обладают низкой температурой. Для быстрого повышения температуры, смесь движется по узкой дуге, не охлаждая радиатор. Во время этого процесса, термостат находиться в замкнутом режиме. Тем самым, достигается оперативный прогрев двигателя.

По ходу повышения температуры элементов двигателя, термостат переходит в свободный режим (открывая крышку). При этом, жидкость начинает проходить через радиатор, двигаясь по широкой дуге. Поток воздуха в радиаторе, охлаждает нагретую жидкость. Вспомогательным элементом для охлаждения, так же, может являться вентилятор.

После создания необходимой температуры, смесь переходит в проводники, расположенные на двигателе. Во время работы автомобиля, процесс оптимизации температуры постоянно повторяется.

На автомобилях — оснащенных турбиной, устанавливается специальный механизм охлаждения с двумя уровнями. В данном, происходит разделение проводников ОЖ. Один из уровней — отвечает за охлаждения двигателя автомобиля. Второй — охлаждает воздушный поток.

Охладительное устройство, является особо важным для правильной работы автомобиля. При возникновении неполадок в нем, двигатель может перегреться и выйти из строя. Как и любая составляющая автомобиля, ОС, требует своевременного обслуживания и ухода. Одним из важнейший элементов для поддержания температурного режима, является охлаждающая жидкость. Данную смесь, необходимо регулярно менять, согласно рекомендациям производителя. При возникновении неисправностей в ОС, не рекомендуется эксплуатировать автомобиль. Это может подвернуть двигатель, влиянию высоких температур. Во избежание серьезных неисправностей, необходимо оперативно диагностировать устройство. Изучив устройство и принцип функционирования, вы сможете определить характер неисправности. При возникновении серьезных неисправностей, обратитесь к профессионалам. Данные знания, так же пригодятся вам в этом. Обслуживайте устройство своевременно и вы существенно увеличите срок ее эксплуатации. Удачи в изучении полезного материала.

Случайные статьи

Вверх